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ABSTRACT 

 Persistent organic pollutants (POPs) i.e., polychlorinated biphenyls (PCBs) and 

polybrominated diphenyl ethers (PBDEs), are targeted in chemometric analysis. Comprehensive 

two-dimensional gas chromatography with time-of-flight mass spectrometer (GCxGC-ToF-MS) 

data is collected to identify the POPs that are toxic and have adverse effects to human health. The 

Food and Drug Administration (FDA) has collected data relevant to this research over the past 

ten years. While thousands of compounds are extracted in the analytical hardware,  only twenty-

three compounds, well-known to the chemists are targeted in these samples. This leaves a 

knowledge gap regarding the role and prominence of the other compounds, i.e, non-target 

analytes, in each sample. The purpose of this research is to analyze the instrumental data for non-

target compounds to determine matches between samples with similar compound distributions, 

discover (potential) coeluting compounds across multiple samples, and find patterns in between 

the samples using the statistical method of principal component analysis (PCA). To account for 

variances in the primary and secondary retention time attained from the analytical hardware of a 

compound in each sample, relative retention times were introduced. Relative retention times are 

n 1in this thesis focuses on utilizing the mass spectra comparison algorithm by focusing on a pre-

selected window of a GCxGC image, where an unknown compound has been identified between 

the PCB-101 and PCB-123 in collaboration with the FDA. The robust mass spectra comparison 

algorithm had a success rate of 93.5% when identifying matches. The remaining 6.5% can be 

reduced by only returning the best matching algorithm and limiting the percent change in the 

primary relative retention time to 3.5%. The PCA correlated the 51,143 unique relative retention 

time pairs of a GCxGC image to 71 principal components. The scores and coefficients of the 

principal components identify samples that differ substantially and samples with compounds in 
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the same relative retention time locations. In conclusion, the mass spectral data comparison was 

performed as intended. The PCA did not indicate any strict patterns but identified locations to be 

investigated in future work   
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PUBLIC ABSTRACT 

 Over the past decade, the Food and Drug Administration (FDA) has been investigating 

toxic compounds in milk samples. When analyzing milk samples using a two-dimensional gas 

chromatography coupled to a time-of-flight mass spectrometer (GCxGC-ToF-MS), thousands of 

compounds may be identified. The FDA targets up to twenty-four compounds. The purpose of 

this research is to be able to shift through the data and identify non-target compounds that occur 

across multiple samples as well as identify any patterns that may emerge between the samples’ 

GCxGC images. To compare compounds, an algorithm was developed that uses the mass spectra 

data collected to identify undiscovered patterns among the detected peaks, statistical methods 

were employed to assess data across seventy-two samples based on their GCxGC image. 

Compound locations are determined relative to the target compounds, being that, over time, the 

compound retention time locations may shift in the GCxGC image. Overall, the comparison 

algorithm compared a known non-target compound and identified 77 compounds with similar 

mass spectra as a ‘match’ with a success rate of 93.5%. Only one compound per sample can be a 

match. The remaining 6.5% accounted for repeated ‘matches’ from the same  sample. When 

exploring the patterns in the sample, seven of the files featured abundances of non-target 

compounds that differentiated them from the other samples. Otherwise, based on the relative 

locations of the target analytes, the remaining samples were found to have little variance between 

one another. Further research is required to further quantify the profiles of each sample to 

improve the clustering, however, locations that are important for further investigation were 

identified and can provide more insight to the FDA of what compounds may potentially need to 

be monitored and possibly regulated.  
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CHAPTER 1: INTRODUCTION 

Chemometrics are used to quantify toxic compounds in a sample. Comprehensive two-

dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToF-MS) data 

has been collected over the past ten years that target twenty-three persistent organic pollutants in 

milk samples. The instrument processes thousands of compounds that co-exist in the sample 

extract. Only the twenty-three polychlorinated biphenyls (PCBs) and polybrominated diphenyl 

ethers (PBDEs) are identified and quantified in the sample extracts. The research presented in 

this thesis discusses methods to analyze the non-targeted compounds that are also collected 

during the target analysis.  

 A GCxGC-ToF-MS records data based on two axes, the primary retention time (PRT) 

and secondary retention time (SRT). An analyte will vary in the PRT and SRT. To account for 

the retention time variances across the samples analyzed, relative retention times (RRTs) are 

introduced. Each sample is divided into twenty-four windows defined by the target compounds 

identified in each sample. The RRTs are dependent on the target compounds primary and 

secondary retention time. Compounds that may be a match are found within 4% change of the 

primary relative retention time (PRRT) and secondary relative retention time (SRRT) of the 

analyte. A robust mass spectra comparison algorithm is presented. The algorithm normalizes the 

mass peak areas in the mass spectrum based on the largest peak. Each mass that has a normalized 

abundance greater than 0.3000 are considered the unique identifier of the compound called the 

fingerprint. The fingerprint is then quantified to a single value for the mass spectrum using 

robust mathematics. When comparing to a separate compound, the difference in peak areas must 

be withing 0.3500. The differences in peak areas and the fingerprint are quantified to a single 
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value and divided to return a measurement value as discussed in section 4.1.2. Conclusions on 

whether two compounds are a match or (potentially) coeluted can be made based on the values.  

 Each of the GCxGC images separated into twenty-four windows using the RRTs as the 

two axes. To determine if there are any compounds that may be found in multiple samples, a data 

matrix was created. The data matrix represents the abundance of a compound at each RRT 

location in the GCxGC image for the seventy-two files. The principal component analysis (PCA) 

[1] is applied to the data matrix. From the PCA, a total score for each sample is calculated using 

the L2 normalization formula. The total scores are then clustered using k-means clustering [2] 

and optimized from the silhouette method [3]. Interpretation of the principal components 

generated is also discussed. 

 The research presented is relevant to the thousands of unknown compounds, some of 

which could be dangerous, that are processed when target analysis is completed. With mass 

spectra comparisons and statistical analysis, chemists can retroactively recognize patterns and 

evaluate samples with one another. One major outcome of this research is the ability to compare 

non-target compounds together based on the relative GCxGC location. Based on the variance of 

the total dataset, the PCA identifies locations for further analysis. Samples differed based on 

geographical locations and whether they were organic. This discrepancy between samples was 

considered when analyzing the clusters based on the PCA scores. Accordingly, an important 

tangible product of this thesis research is the potential to develop a MATLAB package that aids 

in the investigation of non-targeted compounds in milk samples for the FDA, that later can be 

applied to other data matrices. 

 Current research focuses on identifying associations between non-target and target 

compounds through raw signal analysis [4] [5] [6] [7]. Autonomous peak-cognizant techniques 
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have been established and graph-based visualizations can also identify non-target compounds [8] 

[4] [5] [6] based on the peak topography maps of the samples. The most recent research uses 

machine learning techniques to find the association where accumulation and degradation of 

compounds can be geographically analyzed [7]. Though the research presented does not focus on 

the raw signal of the instruments, non-target compounds can be analyzed utilizing the novel 

relative retention times that address the drift in PRT and SRT that typically occurs over time.   

1.1. Key Contributions  

(i) To account for the variance of absolute retention times between samples, relative 

retention times based on the already targeted analytes can be employed. Compounds 

that are within a threshold of percent change are considered for comparison of the 

mass spectra data. 

(ii) The interpretation and discussion of the statistics observed from the principal 

component analysis.  

(iii) A MATLAB package that can be employed on large data repositories for the Food 

and Drug Administration  

Chemists can retroactively analyze the data for non-target compounds from their targeted 

analysis. 
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CHAPTER 2: BACKGROUND MOTIVATION 

In this chapter, we discuss the historical background and research motivation of the ideas and 

technical approach presented in this thesis. Persistent organic pollutants (POPs) have been a 

threat to human health and the environment due to their well-known toxicity causing a multitude 

of documented health problems [9]. Investigation of these compounds in our food is, therefore, 

imperative to public health interest, and of high priority to the Food and Drug Administration 

(FDA). This research is scoped out of a larger research project focused on computational 

monitoring POPs in air and water. The larger project involved both raw signal processing, 

chemometric analysis as well as quantitative informatic computations based on isolated 

compounds. The primary motivation of this thesis, in the context of the larger research effort, is 

to nail down two important computational issues, critical to precise quantitative analysis: (I) The 

issue of mapping a peak to the correct compound despite retention time variability, (II) 

Clustering compound peaks appropriately in a form that is interpretable by an experienced 

analyst. In this context, work presented in this thesis falls in the larger domain of chemical 

pattern recognition, and as such, we present the background motivation and related work in this 

broader context. We also discuss the data collection of the target analysis as it is used to 

retroactively find data patterns to identify non-targeted compounds in this research. Disclaimer: 

Reference to any commercial materials, equipment, or process does not, in any way, constitute 

approval, endorsement, or recommendation by the US Food and Drug Administration. 

2.1. Persistent Organic Pollutants and Why They Are Investigated 

 During the industrial boom after World War II, synthetic carbon-based chemicals were 

designed [9]. In the short term, these chemicals were beneficial in pest and disease control, crop 
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production, and had numerous uses for industry; however, in the long term, many of these 

synthetic chemicals had negative effects on human health and the environment. Many of these 

synthetic chemicals, including their unitentinally produced waste (dioxins), are referred to as 

persistent organic pollutants (POPs). POPs can be found in the air, water, soil, plants, fish, and 

other wildlife. 

 In 2001, the United States took part in the Stockholm Convention, where a global treaty 

was adopted by numerous nations to protect the health of all life and the environment [10]. POPs 

have been linked to cancer, damage the nervous system, cause reproductive disorders, and 

weaken the immune system. Since they are relatively stable, they can bioaccumulate in 

unhealthy concentrations in humans and animals, especially through consumption that occurs in 

the food chain. 

 The first 12 POPs initially listed under the Stockholm Convention contain forms of 

pesticides, industrial chemicals, and by-products. Specifically, as a by-product, polychlorinated 

biphenyls (PCBs) were listed [10]. The manufactured PCBs consist of carbon, hydrogen, and 

chlorine atoms where the location of the chlorine atoms in the chemical structure determines the 

physical and chemical properties of the PCB congener [11]. Toxicity varies between different 

PCBs. They were originally used for industrial purposes since they are non-flammable, 

chemically stable compounds, with a high boiling point and have electrical insulating properties. 

 Another group of compounds that were not listed in the Stockholm Convention are the 

polybrominated diphenyl ethers (PBDEs) [12]. The EPA continues to have concerns about these 

chemicals because they too are persistent, bioaccumulate, and are toxic to humans and the 

environment. They were utilized as flame retardants in textiles, plastics, wire insulation, and 
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automobiles. The levels of the PBDEs detected are increasing though their usage in the United 

States was phased out in 2004. 

 In summary, some POPs are known to cause adverse effects to human health and the 

environment. Chemists target several known chemicals to monitor their concentrations in the 

environment. This research study is a part of the larger effort of identifying and quantifying 

POPs funded by the National Science Foundation (NSF).  

2.2. Monitoring Persistent Organic Pollutants in Air and Water 

There are instruments used to separate chemical compounds for identification and 

quantitation such as gas chromatography and mass spectrometry (GCxGC, GC-FID, GC-MS, 

GC-MS-MS) that produce a high-resolution signal [13]. This research has three aims; (1) raw 

signal analysis to capture co-eluting non-target compounds with target compounds, (2) pattern 

discovery to find the “partners in crime” that can be associated with how the contamination takes 

place, and (3) data integration where multiple types of data, such as chromatographic and mass 

spectrometry data can be combined to comprehensively interpret the data. 

The broader impact of the proposed research can be applied to other environmental 

surveillance and toxin monitoring for the sake of public health. Multiple data sets are already 

being pursued with similar techniques, including data sets from oil spills and groundwater 

contamination.  

The research in this thesis does not focus on the raw interpretation of the signals, 

however, similar approaches of pattern discovery and data integration are pursued. The 

approaches include principal component analysis (PCA) and k-means clustering. The data 

utilized for this research comes from the Food and Drug Administration (FDA) to explore what 

non-target chemicals may be present in milk samples included in the study. 
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2.3. Investigating Persistent Organic Pollutants in Milk Samples  

The Persistent Organic Pollutants (POPs) Team at the FDA Office of Regulatory Affairs 

(ORA) and Office of Regulatory Science (ORS) Arkansas Laboratory (ORA/ARL) proposed the 

use of previous analytical data collected over the past 10 years to evaluate techniques that could 

be used to identify non-targeted, co-eluting analytes [14]. The manufacturer of the instrument 

used for the target analysis, LECO’s two-dimensional gas chromatograph and time of flight mass 

spectrometer (GCxGC-ToF-MS), has developed a software package called “ChromaToF TILE” 

that can identify small differences in mass spectral results between samples.  The Center for 

Food Safety and Applied Nutrition (CFSAN) works as a collaborator with the purpose of 

determining if other compounds should be incorporated in the targeted analysis by the 

conclusions of this research and the historical data associated with the new co-occurring 

compounds (potentially) identified. . This research will also be evaluated in comparison with 

these other techniques to try and learn more about non-targeted analytes. 

Originally, it was proposed to use peak cognizant raw signal analysis techniques [13] to 

create a multi-dimensional evaluation of the data matrix. Then clustering the information created 

from unsupervised algorithms, and variable reduction from principal component analysis can aid 

in comparing full chromatographic runs from similar samples. However, the data that was used 

in collaboration was not the raw data but already processed data from the ORA/ARL. Instead, 

the goal of this research is to provide aid in identifying compounds that are either (1) 

routinely found in a given matrix, (2) unique to a given matrix, and (3) found in a sample 

but not typically present in the matrix.  [14] 
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2.4. Targeted Analysis Data Collection to Identify Persistent Organic Pollutants in 

Lipophilic Samples 

Historically the FDA used a HRGC-HRMS magnetic sector instrument to identify POPs. 

To find a more efficient production for analysis, the FDA began shifting away from the HRGC-

HRMS as the instrument needs to have three analytical runs. Due to the instrument no longer 

being manufactured, the difficulty of maintaining instrument facility, the large instrument 

footprint, and the expense, the FDA changed to utilizing GCxGC-ToF-MS instrumentation in 

2009. There are two portions of the GCxGC-ToF-MS instrument, the gas chromatograph (GC), 

and the mass spectrometer (MS). 

 

Figure 2-1 The GCxGC-ToF-MS instrument located in the FDA lab. Two arrows indicate the gas 

chromatograph oven and the time-of-flight mass spectrometer. Picture courtesy: Jeffrey Archer, 

FDA 

 The oven contains two columns, a primary column and secondary column. The milk 

sample extract is based upon approximately 95 grams of whole milk. The injection is 

approximately 20% of the total milk extract.  1-3 microliters extract of a sample is injected into a 

GC Oven 

MS 
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precolumn that then feeds to the analytical primary column. Compounds are separated based on 

their polarity and then continue into a modulator. The modulator acts as a secondary injector. 

The sample goes into a dual stage thermal modulator as imaged in Figure 2-2. Cold temperature 

prevents the compounds from moving as the hot temperature allows the compounds to continue 

to the secondary column and into the mass spectrometer. Each section will blast cold and hot 

temperatures and the secondary column is packed with a different material that separates the 

PCBs based on the chlorine position relative to the ortho..     

 

Figure 2-2 The dual stage thermal modulator where there are cold and hot jets. The compounds 

from the primary column are entered into the modulate. The jets are then used to inject 

compounds into the secondary column. Picture courtesy: Jeffrey Archer, FDA. Artwork by 

Morgan Moore, FDA. 

 To target analytes in the sample using this instrument, compounds are added that have the 

same chemical structure of the target compounds but instead each carbon is replaced with an 

isotopically labeled carbon-13 atom and serves as an internal standard. The compound has a 

higher mass; however, the retention time should be aligned with the naturally occurring carbon-
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12 structure. Other processing occurs to quantify the amount of the POP found in the sample, 

however that is out of scope for this research. There is at least 10 years of GCxGC-ToF-MS data 

collected using this approach. Further investigation on how to use data to find matching 

compounds in the data matrix and determining similarities and differences between samples can 

be acquired when looking at 72 samples from different years and processed by different 

instruments. 

2.5. Summary 

 All in all, some persistent organic pollutants are investigated and monitored to protect the 

health of humans and the environment. Current research is focusing on how to process raw data 

signals from various instruments (GC-MS, LC-MS, etc.) to identify non-targeted compounds. 

Considering both the chromatographic and mass spectral data, patterns may emerge utilizing 

multiple methods. . Organizations, such as the FDA, are also interested in finding patterns 

through their extensive data set. Previous investigations on samples such as milk, eggs, and fish, 

were used to quantitate the concentration of POPs present. Using the same data collected over 10 

years, exploration of the non-targeted compounds may demonstrate other compounds that may 

need to be monitored. Information of how the samples were collected, such as manufacturer, 

may also indicate if there are fertilizers or other contaminants that need to also be investigated. 

The goal of this research is to sort through their data to find matches, coelutions, and patterns of 

nontargeted analytes. 
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CHAPTER 3: RELATED WORK 

In this chapter, we discuss previous research analyzing target and non-target contaminants that 

are airborne or found crude oil. First petroleum forensics was investigated in "Interpreting 

comprehensive two-dimensional gas chromatography using peak topography maps with 

application to petroleum forensics". This paper used peak topography maps to identify target and 

non-target compounds. Next, “Peak-cognizant Signal Processing of Raw Instrument Signals to 

Quantify Environmental Weathering of Contaminants from the Deepwater Horizon Spill”, 

investigated the graph-visualizations where compounds could be associated with one another. 

PCBs in airborne samples were discussed in "Signal Processing Methods to Interpret 

Polychlorinated Biphenyls in Airborne Samples", where an autonomous framework found 

associations of target and non-target compounds. Graph-visualizations were utilized and 

clustered for identifying the associations. Another research paper, “Raw signal processing and 

graph-based visualization to autonomously interpret large repositories of GC-MS data: 

applications to oil spill weathering studies,” focused on large repositories of data utilizing similar 

techniques. Finally, machine learning was applied to the identify targets in each sample in” 

Employing and Interpreting a Machine Learning Target-Cognizant Technique for Analysis of 

Unknown Signals in Multiple Reaction Monitoring." Summaries of each paper and discussion of 

how this research differs is described below. 

3.1. Overview of Past Research Analyzing Raw Instrument Signals for Target Analysis 

In 2016, peak topography maps (PTM) of two-dimensional gas chromatography 

(GCxGC) were utilized to identify target and non-targeted compounds when analyzing 

petroleum [8]. Without using training data, a robust quantitative measure for determining 

matches between samples was explored in the research. Comparison of PTM and statistical 
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methods, like PCA, were compared for robustness. PTM partitioning grouped peaks that are 

similar or dissimilar based on thresholds. The similar topography generates the cross-PTM score. 

The research focused on similarities and differences of oil samples based on targeted biomarkers 

topography.   

 Environmental weathering of contaminants from the Deepwater Horizon spill was 

researched using peak-cognizant quantification techniques [4]. Signal processing of the raw 

instrument signals would autonomously extract peak information from GC-MS signals. A graph-

based quantitative computational framework relative to each peak represents the weathering that 

occurred. Before the signals were processed, the raw signal was normalized and aligned the 

retention time. The drift of the signals was applied to the weathered oil samples, which allowed 

compound associations to be discovered.  

 Next, signal processing methods were applied to PCBs in airborne samples [5]. A robust 

computational framework was used to autonomously analyze unknown associations between 

target and non-target industrial air pollutants. The autonomous framework utilized minimum 

mean-squared techniques to detect and separate coeluted peaks in the raw instrument signal. The 

amount of PCB in the raw signal was autonomously calculated by using a peak fitting technique 

based on L2 error minimization. Building off previous research, graph-based visualizations were 

utilized to find associations between target and non-target compounds through PCA. Clustering 

techniques like fuzzy c-means and k-means were implemented and compared. The relative 

contribution of PCB signals against ten potential source samples were evaluated utilizing 

parameter optimization techniques. Using 150 air samples, comparisons between target-only 

techniques that focus solely on target compounds versus the proposed techniques were based on 

efficiency. 
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 Large repositories of oil spill weathering were analyzed using raw signal processing and 

graph-based visualizations [6]. Data were collected from GC/MS/MS instruments and focused on 

large-scale machine interpretations. Typical machine data interpretations use automated 

chemometric analysis that focuses on principal component analysis of thousands of compounds 

within a sample. Other manually driven interpretations are annotated by experts in the field. The 

analysis is typically costly in personnel time and is primarily focused on target compounds. 

Analysis of large data repositories are limited. To bridge the gap between expert analysis and 

instrument interpretation, automated peak-cognizant processing of the raw instrument signal and 

the graph-visualizations generated can provide opportunities to discover non-target compound 

peaks and quantify associations with target and non-target compounds. 

 The most recent publication employs instrument learning to analyze unknown signals [7]. 

The unknown signals are from multiple reaction monitoring mode. The autonomous instrument 

learning framework associates target along with non-target peaks present in raw GC/MS/MS 

instrument signals. Three instrument learning algorithms were evaluated based on the accuracy 

in training and testing. Peaks found at specific retention times are annotated and aligned using 

adaptive signal processing techniques. Discoveries of how target PCBs accumulate or degrade in 

certain locations can be found utilizing geographical topographical representations.  

 Overall, the approaches focused on target analysis of raw instrument signals where 

profiles of non-targeted compounds can be acquired through the analysis. Graph-based 

visualizations and statistical methods, such as principal component analysis, have been 

employed. Instead of accounting for the drift in retention times over the large data set, the 

research here introduces relative retention times that can be applied to a large-scale data 

repository. The analysis in this research focuses on retroactively identifying non-target 



14 

 

compounds utilizing the data collected from target analysis. Methods on how to investigate non-

target compounds between target compounds are explored and new approaches with the data are 

proposed for future research.  
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CHAPTER 4: TECHNICAL APPROACH 

In this chapter, we will detail the overall technical approach as well as the nature of the dataset 

under consideration to justify the methodology chosen. Specifically, we provide detailed 

descriptions of what it means to compare two chemical analytes, i.e., compounds represented by 

peaks in the GCxGC image as well as the mass spectra. In particular, we introduce the concept of 

relative retention times that are determined by the target compounds. This allows us to robustly 

assess which compounds in the data matrix are worth comparing against the mass spectra 

comparison algorithm. We also use relative retention times to analyze the GCxGC image 

between two target compounds, referred to as a window. Statistical analysis techniques, i.e., 

principal component analysis, is used to determine the similarities and differences between milk 

samples based on the abundances of compounds in the GCxGC image. Finally, we discuss 

clustering techniques based on the L2 normalization scores of each sample from the PCA. The 

results are recorded in chapter 5 with further discussion on how the methodologies can be used 

for analysis.  

4.1. How to Compare Two Analytes Together Using Their Mass Spectra Data 

The technical approach in this work is based on a diverse portfolio of analyzed milk 

samples provided by the Food and Drug Administration (FDA). The data set contains seventy-

two milk samples that were processed using a LECO Pegasus 4D GCxGC-ToF-MS instrument, 

which provided a tiered resolution of each sample into GCxGC and mass spectrometric domains. 

A two-dimensional gas chromatogram image breaks down the sample into peaks based on their 

molecular weight and the abundance of the compound. Each GCxGC peak was paired with the 

mass spectral data, which provides another level of analytical breakdown of the compound(s) 

represented by the GCxGC peak. The seventy-two samples varied by location, specific 
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instruments used, and year collected. To compare the analytes together two factors were 

considered: (1) the relative primary and secondary retention time pairs and (2) the mass spectra.  

4.1.1. Introducing Relative Retention Times for Proper Relations Between Samples 

Collected Over the Years 

When the sample is processed by the LECO instrument, the output is a two-dimensional 

gas chromatogram. In the x-direction is the primary retention time (PRT) and the y-direction is 

the secondary retention time (SRT). The PRT has a range of 450-2600 seconds (s), where the 

SRT has a range of 0-4 seconds. Each represents how a compound moves through the primary 

and secondary columns of the LECO instrument as described in section 2.4. 

In Figure 4-1 there are three rectangles. The first larger rectangle represents the primary 

column, the blue rectangle represents the modulator, and the last represents the secondary 

column. Compounds that are injected into the instrument are separated first based on their 

polarity and boiling point. Next, the modulator uses temperature variations to inject the 

compounds into the secondary column.  

The secondary column, which is shorter, narrower, and thinner, has a different polarity 

and continues to separate the compounds. The time that the compound leaves the primary 

column corresponds to the PRT and the time that the compound leaves the secondary column 

corresponds to the SRT. The highest intensity of a compound is recorded into a file that was 

utilized for this research. 
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Figure 4-1 Simplified Process of Primary and Secondary Columns Picture Courtesy: Jeffrey 

Archer, FDA. 

Each milk sample has twenty-four target compounds where twenty-three are typically 

found in the same general area in the chromatogram. A comprehensive list of the twenty-three 

compounds organized by order is found in Table 4-1. A retention time pair of the primary 

retention time and secondary retention time are used as a determinate for each compound found 

in the sample, however, it is known that the PRT of the same compound can vary between 3-15 

seconds based on the instrument used and when the sample was processed. The SRT is also 

known to vary by hundredths of a second.  

 To account for the discrepancies in the PRT and SRT, relative retention times were 

assessed for each POP compound. Each sample has known target compounds that occur at a 

certain location. PCB-028 always appears before PCB-052. If the retention times of PCB-052 

were found relative to PCB-028, the variance between each sample reduces. The primary relative 

retention time (PRRT) and secondary relative retention time (SRRT) are calculated based on the 

target compound number k — where PCB-028 represents target compound number one and 
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PCB-052 represents target compound number two that increments all the way to target 

compound number twenty-three which represents PBDE-153. The relative retention times are 

described in the equations 4-1 and 4-2. PCB-028 was calculated relative to itself and has a PRRT 

and SRRT of (1,1). 

Table 4-1 A comprehensive list of each target compound and their corresponding target 

compound number.  

1) PCB-028 6) PBDE-028 11) PCB-138 16) PBDE-047 21) PBDE-099 

2) PCB-052 7) PCB-118 12) PCB-167 17) PCB-170 22) PBDE-154 

3) PCB-070 8) PCB-114 13) PCB-156 18) PBDE-077 23) PBDE-153 

4) PCB-101 9) PCB-153 14) PCB-157 19) PCB-189  

5) PCB-123 10) PCB-105 15) PCB-180 20) PBDE-100  

 

Equation 4-1 The primary retention time is dependent on the target compound found previous to 

the current target compound. For example, the primary retention time of target compound 

number one (PCB-028) is used to calculate the PRRT of target compound number two (PCB-

052). PCB-028 has a PRRT of one. 

𝑃𝑅𝑅𝑇𝑘+1 =
𝑃𝑅𝑇𝑘+1

𝑃𝑅𝑇𝑘
 

Equation 4-2 The secondary relative retention time is dependent on the target compound found 

previous to the current target compound. For example, the secondary retention time of target 

compound number one (PCB-028) is used to calculate the secondary relative retention time of 

the target compound number two (PCB-052). PCB-028 has a SRRT of one. 

𝑆𝑅𝑅𝑇𝑘+1 =
𝑆𝑅𝑇𝑘+1

𝑆𝑅𝑇𝑘
 

 Using PCB-052 as an example, the minimum, maximum, average, and standard deviation 

of the PCB-052’s absolute PRT and SRT as well as the PRRT and SRRT was calculated and 

listed in Table 4-2. Note that the standard deviation of the relative retention times is much 

reduced when compared to the absolute retention times. The percent change using Equation 4-3 
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was calculated to be 15.3% and 82.4% respectively for PRT and SRT and 2.6% and 3.6% 

respectively for PRRT and SRRT. Clearly the PRRT and SRRT give a more precise location of 

the target compounds instead of the absolute retention times, and may result in trying to look for 

a compound in the wrong location. 

Equation 4-3 The percent change of each primary retention time, secondary retention time, 

primary relative retention time, and secondary relative retention time was calculated using the 

minimum and maximum value for PCB-052 in Table 4-2. 

% = 100 ∗
|min − max  |

min   
 

Table 4-2 Statistics of the absolute and relative retention times of PCB-052 for 72 samples 

  

Next, consider the coefficient of variation (CV), which is the standard deviation divided 

by the average. This measurement describes the variability of a sample relative to its mean. The 

CV is expressed as a percentage and is used to compare the spread of data sets. The CVs for each 

of the absolute and relative retention time is calculated for each target compound and is 

expressed in Table 4-3 and Table 4-4. 

  

PCB-052 PRT PRRT 

MIN 746.4 1.096584 

MAX 861.01 1.125097 

AVG 799.1207 1.111418 

SD 28.53849 0.005521 

 
SRT SRRT 

MIN 0.85 1 

MAX 1.55 1.036541 

AVD 1.25375 1.064409 

SD 0.199433 0.008672 
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Table 4-3 The coefficient of variation of the primary retention time (PRT) and secondary 

retention time (SRT) for each marker are listed for each target compound. The PRT has a 

coefficient of variation between 2-4.1% as the SRT has a coefficient of variation between 10-

16.7%. It was expected for the PRT to not vary too much as each compound should leave the 

primary column around the same time. 

PCB-028 4.00% 16.24% PCB-

153 

2.52% 15.27% PCB-170 2.17% 16.62% 

PCB-052 3.60% 15.96% PCB-

105 

2.58% 15.32% PBDE-047 2.16% 14.03% 

PCB-070 4.04% 16.01% PCB-

138 

2.60% 15.16% PCB-189 2.02% 13.62% 

PCB-101 3.86% 15.61% PCB-

167 

3.12% 15.60% PBDE-100 2.08% 12.57% 

PCB-123 2.65% 15.29% PCB-

156 

2.96% 15.28% PBDE-099 2.26% 12.08% 

PBDE-028 2.71% 15.35% PCB-

157 

2.52% 15.46% PBDE-154 2.43% 10.87% 

PCB-118 2.59% 15.27% PCB-

180 

2.22% 15.18% PBDE-153 3.14% 10.01% 

PCB-114 2.64% 15.49% PBDE-

047 

2.30% 15.00%  
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Table 4-4 The coefficient of variation of primary relative retention time (PRRT) and secondary 

relative retention time (SRRT) for each target compound are listed. PCB-028 does not have a 

value as the PRRT and SRRT are calculated relative to itself. The PRRT has a coefficient of 

variation between 0-2.5% as the SRRT has a coefficient of variation between 0-4.2%. The 

variation of the data is less than the variation in the absolute retention times, concluding that 

relative retention times are the preferred method. 

PCB-028 - - PCB-153 0.58% 1.88% PCB-170 0.17% 0.83% 

PCB-052 0.50% 0.86% PCB-105 0.33% 1.28% PBDE-047 0.11% 0.82% 

PCB-070 2.48% 1.70% PCB-138 0.45% 0.92% PCB-189 0.28% 1.32% 

PCB-101 2.38% 1.99% PCB-167 2.08% 1.85% PBDE-100 0.15% 1.47% 

PCB-123 0.64% 1.35% PCB-156 1.44% 2.40% PBDE-099 0.85% 1.12% 

PBDE-028 0.15% 0.88% PCB-157 1.10% 1.54% PBDE-154 1.90% 3.19% 

PCB-118 0.21% 0.94% PCB-180 1.01% 1.72% PBDE-153 2.08% 4.20% 

PCB-114 0.49% 1.94% PBDE-047 0.20% 0.80%  

 

 The variation of the data spread is smaller when using the relative retention time in both 

the primary and secondary locations. The PRT is expected to have a consistent or near consistent 

value, however with the variation of the PRRT being less than 1% in most cases, and 2.5% being 

the maximum variation spread, relative retention times provides a small window of where a 

compound may be found in the GCxGC image. When considering the secondary retention time, 

the spread of approximately 15% for each marker all reduced to a value less than 5%. This 

demonstrates that using a relative location for each sample will provide a more precise location 

of where the compound may be found. 

Since relative retention times can easily identify where each marker compound is within 

each sample, the same idea can be applied to every non-targeted compound. A compound that is 

non-targeted must be within 5% change of their relative retention times. The non-targeted 
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compounds have a relative retention time based on which targeted analytes they are surrounded 

by. Each section divided by the targeted analytes are referred to as windows, where the 

compounds from 450s to the PRT of PCB-028 is referred to as window 1. Window 2 would be 

the unknown compounds between PCB-028 and PCB-052 with a PRRT and SRRT dependent on 

the location of PCB-052’s PRT and SRT. The values are found similar to Equation 4-1 and 4-2, 

except the numerator is the non-targeted compound’s PRT and SRT. For the last window 24, the 

RRTs are calculated based on PBDE-153. 

Equation 4-4 Each non-target compound has a primary relative retention time based on the target 

compound k. Target compound k indicates the end of the window k. For window twenty-four, the 

target compound used in PBDE-153. 

𝑃𝑅𝑅𝑇𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 =
𝑃𝑅𝑇𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

𝑃𝑅𝑇𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑤𝑖𝑛𝑑𝑜𝑤 𝑘
 

Equation 4-5 Each non-target compound has a secondary relative retention time based on the 

target compound k. The target compound k indicates the end of the window k. For window 

twenty-four, the target compound used in PBDE-153. 

𝑆𝑅𝑅𝑇𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑 =
𝑆𝑅𝑇𝑛𝑜𝑛−𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

𝑆𝑅𝑇𝑤𝑖𝑛𝑑𝑜𝑤 𝑚𝑎𝑟𝑘𝑒𝑟
 

As described earlier, the condition dictated in Equation 4-6 needs to be met for a 

compound to be considered a potential match. This condition speeds up the runtime for the 

algorithm to perform, as not every permutation of comparison needs to be done. Once locations 

are determined to be similar, then the algorithm described in 4.1.2 can be implemented to 

determine if there are any matches or coelutions in the data matrix. 

Equation 4-6 The percent change of the primary relative retention time must be within 5% of the 

‘base compound’, where the ‘base compound’ is the analyte that is being assessed if there are 

any matches within other milk samples. 

100 ∗
|𝑃𝑅𝑅𝑇𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 − 𝑃𝑅𝑅𝑇𝑏𝑎𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛|

𝑃𝑅𝑅𝑇𝑏𝑎𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛
< 5% 
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Equation 4-7 The percent change of the secondary relative retention time must be within 5% of 

the ‘base compound’, where the ‘base compound’ is the analyte that is being assessed if there are 

any matches within other milk samples. 

100 ∗
|𝑆𝑅𝑅𝑇𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑡𝑜 𝑏𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 − 𝑆𝑅𝑅𝑇𝑏𝑎𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛|

𝑆𝑅𝑅𝑇𝑏𝑎𝑠𝑒 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛
< 5% 

 

4.1.2. Discussion of the Mass Spectra Comparison Algorithm 

During each run of the LECO instrument process, compounds are separated and 

processed in a time-of-flight mass spectrometer. Sixty-seven spectra are captured every second. 

Mass spectrometry is a technique that analyzes the mass to charge weight of molecules. The raw 

signals are processed through software by the FDA and the resulting discrete signal is given in 

the data matrix. An example of a resulting mass spectrum is shown in Figure 4-2. The caliper 

signal is the total ion mass spectrum, and the peak true signal is the deconvoluted mass spectrum 

representation.  

 

Figure 4-2 An example of a peak true mass spectrum of peak 35. The x-axis shows the mass to 

charge ratio (m/z) and the y-axis shows the abundance of masses based on the area of the peak. 

The mass to charge ratio equates to the molecular mass of the compound. Picture courtesy: 

Jeffrey Archer, FDA 

 Each of the peaks that are in the peak true signal have a corresponding peak area, or an 

abundance of a mass to charge ratio. To represent this data in the data matrix, the molecular 

weight is paired with the peak area and listed in an excel sheet. The representation of the mass 
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spectrum of Figure 4-2 is shown in Figure 4-3. The peak information of the mass spectrum is 

described in Equation 4-7. Note that the peak information is ordered from largest area to smallest 

area. 

Equation 4-7 The peak information is stored in a two-element vector S. The two vectors are of 

the molecular weight, indicated as the mass of the ion, and peak area associated for all i peaks in 

the mass spectrum sorted from largest area to smallest area 

𝑆 = (𝑚𝑎𝑠𝑠𝑖, 𝑎𝑟𝑒𝑎𝑖) for i valued pairs in the mass spectrum 

195:1376601 165:722364 180:573602 210:501452 178:287023 179:242915 196:235082 166:170339 

152:146764 167:136112 153:127566 181:114523 211:96974 151:50054 177:46094 

176:41580 193:34176 189:33830 164:33714 154:30378 163:28668 191:24646 168:24231 194:23233 

150:23158 190:19842 192:18364  

Figure 4-3 The mass spectrum representation of peak 35 is shown above. Each entry is the mass 

to charge ratio, or molecular weight, and the peak area associated with the mass as per Equation 

4-7. 

To be able to compare two of these discrete data representations together, it is important 

to find the fingerprint of the peak information, which represents the unique identity of the 

GCxGC compound peak analyzed in the mass spectrum. The fingerprints are the molecules with 

large peak areas that can identify a compound. To do so, each peak area is normalized based on 

the largest peak area in the signal. In this case, Peak 35 would be normalized based on mass 

195’s peak area of 1,376,601 for each mass and is listed in Figure 4-5. A fingerprint is all of the 

peaks that have an normalize area greater than 0.3000 also referred to as being 30% of the 

normalized maximum peak. An example of the fingerprint is seen in Figure 4-6. The value of 

30% was chosen based on consultations with the FDA expert regarding appropriate choice of a 

noise threshold for isolating peaks within the mass spectrometry profile. The normalized peak 

information N is listed as a two-element vector of mass and normalized area and is described in 
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Equation 4-8. The fingerprint only includes the masses that are greater than 0.3000 from the 

normalized peak information vector as described in Equation 4-9. 

195:1.000 165:0.5247 180:0.4167 210:0.3543 178:0.2085 179:0.1765 196:0.1708 166:0.1237 

152:0.1066 167:0.0989 153:0.0927 181:0.0832 211:0.0704 151:0.0364 177:0.0335 

176:0.0302 193:0.0248 189:0.0246 164:0.0245 154:0.0221 163:0.0208 191:0.0179 168:0.0176 

194:0.0169 150:0.0168 190:0.0144 192:0.0133  

Figure 4-4 The normalized peak information of peak 35 is shown above. Each of the areas from 

Figure 4-3 was divided by 1,376,601. The mass is separated by a colon with the normalized area 

of each mass. 

195:1.000 165:0.5247 180:0.4167 210:0.3543 

Figure 4-5 The fingerprint of peak 35 with the corresponding normalized areas is shown above. 

Each normalized area is greater than 0.3000. The threshold value was determined based on 

collaboration with the FDA. 

Equation 4-8 The normalized peak information is a two-element vector of mass and normalized 

area for all the i masses. The normalized area is found by dividing the largest area in the mass 

spectrum.  

𝑁 = ( 𝑚𝑎𝑠𝑠 ,
𝑎𝑟𝑒𝑎𝑖

max 𝑎𝑟𝑒𝑎1
) for i valued pairs in the mass spectrum 

Equation 4-9 The fingerprint is a two-element vector of the peak information from the 

normalized peak information where the normalized area is greater than 0.3000. The mass and the 

corresponding normalized peak area are stored pairwise in the vector. 

𝐹 =  {𝑁𝑥| 𝑁𝑦 >  0.3000} 

To perform the analysis, consider two mass spectrometry signals S1 and S2 that represent 

the information described in Figure 4-3 and Equation 4-7. The maximum peak areas in both S1 

and S2 are the first valued pairs in the signal. The normalized signals N1 and N2 are found using 

Equation 4-8 as well as the fingerprints F1 and F2 using Equation 4-9. To quantify each 

fingerprint, the amount of normalized area for each fingerprint mass is squared and summed 

together. Equation 4-10 describes the quantification of the fingerprint that contains k elements. 
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Equation 4-10 To quantify the fingerprint of a compound, the magnitude of the normalized peak 

area is squared and summed for each k mass in the fingerprint. 

𝐸 =  ∑|𝐹𝑦|
2

𝑘

𝑗=1

 

 Now that the normalized signals, fingerprints, and a value to quantify the fingerprint are 

established,  comparisons between the signals can be made. There are two comparisons that are 

to be done. One comparison is between S1 to S2. The other comparison is between S2 to S1. First, 

S1 is the “base” signal and is compared to S2. For S2 to be considered a match to S1, N2 must 

contain all the masses in F1. If each mass if found in the two vectors, then the difference of the 

normalized areas for each element is calculated. The difference has to be less than or equal to 

0.3500 based on consultation with the FDA chemist expert. If the peak area difference is greater 

than 0.35, then S2 is not considered a match and returns -1. To quantify the differences of the two 

mass spectra, the difference of the two is squared and summed for all the k elements in F1 as 

shown in Equation 4-11.  

Equation 4-11 Each of the masses in the fingerprint of S1 is compared with the normalized peak 

information of S2. Each mass of F1 must be in N2. If every mass is found, then the absolute 

difference between the normalized peak areas is calculated, squared, and summed for all k 

elements in F1. This is to quantify the peak area ratios in each mass spectrum. 

𝐷 =  ∑|{𝑑𝑗|𝐹𝑦,𝑘 − 𝑁𝑦 < 0.35}|
2

𝑘

𝑗=1

 

Finally, to quantify the total peak information the sum of differences from Equation 4-11 

is divided by the quantification of the fingerprint.  

Equation 4-12 To quantify the peak information, the values from Equation 4-10 and Equation 4-

11 are divided to get the value V. The value V is used to determine the result of the compared 

mass spectra. The value returned is also used for the certainty of two matching compounds as 

listed in Table 4-5.  

𝑉 =  
𝐷

𝐸
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The same procedure is done except S2 is compared to S1. There are three outcomes that can 

occur; (1) both V1to2 and V2to1 are positive values (ℜ+ which includes zero) where the certainty is 

calculated in Equation 4-13, (2) V1 returns a value and V2 is -1, and (3) V1 is -1 and V2 is a value. 

The table below dictates the results of the two signals S1 and S2. 

Equation 4-13 The certainty percentage measures how similar the mass spectra are with one 

another. It is calculated by dividing the minimum value V by the maximum value V generated 

when comparing the mass spectra together. When the fingerprints are the same in both spectra, 

the certainty will return a high percentage, otherwise, if there are spectra that have different 

fingerprints but still have the masses within them, then the certainty percentage would be lower. 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦(%) = 100 ∗
min 𝑉1 , 𝑉2

max 𝑉1 , 𝑉2
 

Table 4-5 Result of algorithm based on the value V1 and V2. The value V can return a -1 if not all 

of the fingerprint mass to ion ratios are identified in the compared normalized signal, or if the 

difference in the normalized peak areas are greater than 0.3500. Otherwise, a certainty 

percentage will be outputted with the result of matching compounds. 

V1to2 V2to1 Result 

ℜ+ ℜ+ Match with some certainty percentage (%) 

ℜ+ -1 Coelution 

-1 ℜ+ Base Coelution 

 

A real positive value indicates that each mass that was in F can be found in N, and that 

the peak area’s difference was less than 0.35. When a -1 is returned, it means that either not all 

the masses of F were found in N or that the difference between the fingerprints mass and the 

normalized signal was greater than 0.35. When two real values are returned, that indicates that 

both fingerprints were found in both signals. If there is a -1 paired with a real number, there is a 
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possibility that there may be coeluting compounds. The fingerprint could be found in the mass 

spectrum in one direction but not in the other.  

 Using the relative retention times discussed in 4.1.1, the algorithm compares signals that 

are within 5% change of the PRRT and SRRT of the “base” compound or S1. Outcomes of the 

algorithm and other observations are discussed in Chapter 5 under section 5.1. 

How to Find 

4.2.  Patterns in the Gas Chromatograms Utilizing Statistical Methods 

An important goal of this research is not only to be able to identify matching compounds, 

but to also find patterns across the entirety of the data matrix. There are twenty-four windows 

across the data as explained in section 4.1.1 where the same process introduced here can be 

performed for each window. The relative retention times of each location of the GCxGC image is 

calculated. Each RRT corresponds to a compound. The goal is to use unsupervised techniques to 

find unbiased relations in the data set. Principal component analysis is employed to find the 

variance between each GCxGC image corresponding to a sample. 

4.2.1. Performing the Principal Component Analysis Against Areas in the GCxGC Image 

To see the variance between the images of each sample, the principal component analysis 

was performed for a window as it is the current state of the art method that prioritizes the 

variance between observations. The PCA is a method that reduces the dimensionality of a data 

set that contains a large number of variables while maintaining the variance of the original data 

set. The new axes that represent the data are called principal components (PCs).  

Say that there are p random variables and that the covariances or correlation between the 

variables are of interest [1]. Instead of looking at 
1

2
𝑝(𝑝 − 1) correlations or covariances, few 

derived variables can be calculated that preserve the information. This is done by finding the 
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eigen values and vectors of the data matrix. The largest eigenvalue corresponds to the first PC, 

the second largest the second PC, and so on until all of the variance is accounted for. It is 

expected for a large value of p that the number of components m is much smaller, m << p. 

MATLAB software is used to calculate the PCA of the GCxGC image of a window [1]. 

Each unique PRRT and SRRT location in the window has an area associated with it. Each area is 

normalized based on the window target POP’s abundance. After this normalization, the PCA 

produces two matrices. One matrix is the coefficients of each PC that translate the p variables to 

m PCs. The other is the score matrix where a sample is described by each m variables. The 

percentage of variance PC represents for the entire data matrix is also outputted.  

The scree describes how each PC contributes to the total variance. According to Principal 

Component Analysis, Second Edition, if a set of variables have a substantial correlation among 

them, then the first few components will account for most of the variation of the original 

variables. The last few PCs identify directions in which there is very little or near-constant linear 

relationships among the original variables. 

The scores are the translation of values based on the PCs. The coefficients describe how 

much weight a variable p contributes in describing m variables. The score of the file is based on 

the PCs. The coefficients multiplied based on each variable calculates to the score of a sample 

file. 

Equation 4-14 The GCxGC image is composed of compound abundances.  Each indicated 

compound from the data file are normalized based on the target compound k that defines the end 

of a window, similar to the relative retention times. 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 =
𝑒𝑎𝑐ℎ 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑙𝑖𝑠𝑡𝑒𝑑 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑙𝑒

𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑤𝑖𝑛𝑑𝑜𝑤 𝑘
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Equation 4-15 The score of a sample f is calculated from the dot product of the coefficient vector 

and the normalized abundance of the sample. The coefficient of variable location p is multiplied 

by the normalized abundance found at that location to return the m score of sample f. 

𝑠𝑓 = ∑ 𝑐𝑜𝑒𝑓𝑓𝑝,𝑓 ∗ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑝,𝑓

𝑚

𝑗=1

 

Since the PCA is performed on the GCxGC image, the coefficients dictate which 

locations are most prominent in describing the PC. If the coefficients are normalized for each PC 

based on the maximum coefficient value, the weights of each location can be calculated and 

graphed. Understanding which locations play a role in the describing the variance can indicate 

compound locations that have a large abundance that are not being targeted, compounds that 

have an area that is not heavily weighted as they are all similar, and other patterns can be 

explored.  

Equation 4-16 The normalized coefficient vector, that has p elements, is calculated by taking 

each p coefficient dividing by the maximum coefficient for a principal component. 

𝑛𝑐𝑝 =  
𝑐𝑜𝑒𝑓𝑓𝑝

max 𝑐𝑜𝑒𝑓𝑓𝑝
 

4.2.2. Method for Clustering Scores from the Principal Component Analysis 

The scores matrix of the PCA relates the sample files to the PCs. To associate one value 

to the sample, the L2 normalization of each sample for each score was taken. This is finding the 

distance away from the origin to the score of the file based on all the n components. Each score 

is represented for sample i and component k by xi,k and is summed and square rooted to the 

resulting score of Xi.   
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Equation 4-17 For m principal components found from the PCA, each m score is squared. The 

sum of each squared score is then square rooted to return a value for sample number i. This 

formula is referred to as the L2 normalization. 

𝑋𝑖 = √∑|𝑥𝑖,𝑘|
2

𝑚

𝑘=1

 

 An unsupervised clustering technique commonly used is K-Means Clustering [2]. It is an 

iterative algorithm that sorts each observation into exactly one cluster. Each cluster is defined by 

a centroid. The number of clusters must be given before the data-partitioning can occur. The 

algorithm randomly chooses the centroid location for each cluster. Next, the distance of each 

point to the cluster centroids is computed. Each observation is then assigned to a cluster with the 

minimal distance. The average of the observations in each cluster is calculated. Each centroid is 

then placed in their clusters’ average location. The process continues with the new centroid 

location except each observation can be individually assigned to a different centroid if the sum of 

distances would be reduced. Each cluster centroid is then recomputed after the reassignments. At 

the end of the process, data points are grouped together based on how similar their observations 

are.  

 To find the optimal value of clusters, the Silhouette Method [3] is employed. The 

silhouette method calculates a silhouette value for each point and determines similar points are to 

each other in the same cluster. If the points have a high silhouette value, then the clustering 

solution is appropriate otherwise there may be too many or too few clusters indicated. To 

calculate the silhouette value, two variables are attained. First the average distance ai, which is 

calculated from the ith point to each point in the same cluster. Then the minimum average 

distance bi is calculated. The average distance from the ith point to each point in a cluster is 

minimized depending on the clusters.  
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Equation 4-18 The silhouette value for point i is calculated by taking the difference of the 

smallest average distance of the ith point from all the points in a singular cluster (bi) and the 

average distance of the ith point to each point in the same cluster (ai), divided by the maximum 

of the two averages. The silhouette value can range from -1 to 1 where a high value near 1 

indicates that the points are clustered appropriately.  

𝑆𝑉𝑖 =
(𝑏𝑖 − 𝑎𝑖)

max
 

(𝑎𝑖, 𝑏𝑖)
 

 An evaluation tool utilizes this method and returns the optimal number of clusters for K-

means based on how many points have silhouette values. Since a random location is used for the 

centroids in the first iteration, it is important to repeat the clustering and use the most usual form. 

MATLAB allows ‘replicates’ as an option so it can be done internally.  

 The distance measurement described for the K-Means clustering is referred to as the 

Squared Euclidean distance, where each centroid is the mean of the points in the cluster. Another 

option is the sum of absolute differences where the centroid is the component-wise median of the 

points in that cluster. Others include cosine, correlation, and hamming distances [2].  

The squared Euclidean distance was evaluated against distance measurements. To 

represent how well the distance represented the data, a hierarchical cluster tree was created. Each 

tree had a corresponding cophenetic correlation coefficient, which measures the quality of the 

solution. When the magnitude of the value is close to one, then the solution is of high-quality. 

The value is calculated by MATLAB’s ‘cophenet’ function. The best representation of the data is 

using the sum of absolute differences as the distance measurement.  

 Once the clusters are established, each sample can then be compared to other samples 

within the same clusters. To understand how the PCA was able to give a value to each sample 

can determine if there are similarities or differences between each file. Explorations on the 

clusters and determinations of methods that can utilize the results will be discussed in Chapter 5.  
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CHAPTER 5: RESULTS 

First, we evaluated the mass spectral data in chapter 4, and only one window was utilized for 

analysis. In this case, Window 5, which is between PCB-101 and PCB-123 was the focus of this 

study. This case study was determined based on consultation with the FDA as a representative 

window where dominant peaks, target and (potentially) non-target, would be present. Out of the 

seventy-two samples included in this study, there are 63,501 compounds identified in this 

window. The window was selected in part because there is an already known contaminant that 

has been identified in the window. This analyte, dichlorodiphenyldichloroethylene (DDE), 

provides a test case for the algorithm to determine if something is found correctly within the 

evaluation, as the compound has been verified in by the FDA as being present. The applications 

for this window can be applied to other windows in future work. Secondly, we discuss the trends 

and methodologies utilizing the principal component analysis (PCA) data generated from the 

GCxGC images of window 5 for each sample. The L2 normalized score of each sample is 

clustered. The coefficients and scores from each principal component (PC) are investigated and a 

function was created to pull relative retention time locations that may be of interest to the FDA 

to analyze data across study samples . All the locations are defined by relative retention times. 

Finally, discussion of potential future work is assessed at the end of the chapter. 

5.1. Evaluation of Mass Spectra Comparison Algorithm 

The algorithm discussed in 4.1.2 was evaluated and applied to all the compounds 

identified in window 5. Many matches, coelution, and base coelutions were noted as a result. The 

results that occurred when compound Unknown 3744 was used as the ‘base compound’ was 

analyzed and verified in consultation with the FDA. Unknown 3744 was chosen as the ‘base 

compound’ because it was established to be the non-targeted DDE compound present.  
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The mass spectrum of the compound is found in Figure 5-1.The masses and the 

corresponding peak areas are listed in Figure 5-2. The fingerprint of Unknown 3744 is also 

presented in Figure 5-3. Recall the fingerprint is where each of the normalized peak heights are 

greater than 0.3000. The red box in Figure 5-1 outlines the threshold for the fingerprint masses.  

` 

Figure 5-1 The caliper and peak true mass spectrum of Unknown 3744 is shown above. This 

compound is the ‘base compound’ used for comparisons. The red box indicates the masses that 

are in the fingerprint for Unknown 3744. The x-axis represents the mass to charge ratio as the y-

axis represents the abundance of each mass. 

246:543365 248:351744 176:261545 318:226714 316:175286 320:111661 247:101330 

210:101018 175:95305 174:84550 249:60057 250:59847 150:53046 212:42635 281:37743 283:36483 

177:35867 211:34530 282:33649 319:31988 317:29196 170:27845 172:25401 160:24443 280:24022 

322:23051 245:21652 163:21099 233:20386 321:16412 173:15753 162:15409 284:14547 285:14047 

184:13960 235:13495 161:12884 213:12745 186:9702 151:9191 251:8463 209:8157 185:8095 

199:7211 164:7144 171:6197 

Figure 5-2 The mass spectrum data collected in the peak true of Unknown 3744. Each mass and 

their corresponding peak area are separated by a colon. 

246:1.000 248:0.6473 176:0.4813 318:0.4172 316:0.3226 320:0.2055 247:0.1865 210:0.1859 

175:0.1754 174:0.1556 249:0.1105 250:0.1101 150:0.0976 212:0.0785 281:0.0695 283:0.0671 

177:0.0660 211:0.0635 282:0.0619 319:0.0589 317:0.0537 170:0.0512 172:0.0467 160:0.0450 

280:0.0442 322:0.0424 245:0.0398 163:0.0388 233:0.0375 321:0.0302 173:0.0290 162:0.0284 

284:0.0268 285:0.0259 184:0.0257 235:0.0248 161:0.0237 213:0.0235 186:0.0179 151:0.0169 

251:0.0156 209:0.0150 185:0.0149 199:0.0133 164:0.0131 171:0.0114 

Figure 5-3 The normalized peak information of Unknown 3744. Each mass is paired with their 

normalized area, separated by a colon. The normalized areas were found by dividing each peak 

area by 543,365. 
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246: 1.000 248: 0.6473 176: 0.4813 318: 0.4172 316: 0.3226 

Figure 5-4 Fingerprint of Unknown 3744 are the masses and their normalized area that are 

separated by a colon. 

The library search indicated that the compound is a p-p’-DDE. The p-p’-DDE has a 

specific structure as shown in Figure 5-6. The structure of the compound has a high certainty and 

likely is a p-p’-DDE according to the FDA. Two standards were purchased to verify the structure 

for Unknown 3744.  

 

Figure 5-5 The library search of Unknown 3744 performed by the FDA indicated that the 

compound structure is likely p-p’-DDE 

 

Figure 5-6 The structure of p-p’-DDE compound [15] 

To assess the performance of the algorithm, the experienced analyst from the FDA 

evaluated each of the comparisons manually. When the algorithm was processed, both the PRRT 

and SRRT had to be 5% or less from PRRT and SRRT of Unknown 3744. The peak area 
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differences were set to a threshold of 0.3500. This value was set in consultation with the FDA. If 

the difference was greater than 0.3500, the compounds were not considered a match and the 

algorithm returned a -1. Comparing Unknown 3744 as the base compound, 104 other compounds 

from different files were identified as either a match, coeluted, or base coeluted. 

Through collaboration with the FDA, the mass spectra were first visually compared. The 

compounds break into the same fragments when processed so the spectra are expected to contain 

similar peaks and similar ratios between peaks. If the spectra were considered to be a chemical 

match, then the relative retention times were verified to be within the proper range. After this 

was confirmed, the predicted structure of the compound was considered based on a library search 

for the compound.  

5.1.1. Analytes that Returned Base Coeluted from the Mass Spectra Comparison 

Algorithm for Unknown 3744 

First, the performance of the base coeluted labeled compounds was analyzed. There were 

eight compounds classified as base coeluted. Recall that base coelution is when the V2to1 returned 

a real value however V1to2 returned -1. Here two unknowns, 3315 and 3244 were identified as 

base coeluted. At first glance, both were seen as a match by the analyst from the FDA. The data 

had been reprocessed by the time the evaluation of the algorithm was done. Unfortunately, the 

mass spectrum of Unknown 3244 could not be located. For verification purposes, only Unknown 

3315 will be presented. The mass spectrum of Unknown 3315 is shown below. 
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Figure 5-7 The mass spectrum of Unknown 3315 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. In the peak true 

signal, mass from the fingerprint of Unknown 3744 include 246, 248, 316, and 318. 

Unknown 3315 has 4 out of the 5 masses from the fingerprint of Unknown 3744. Masses 

246, 248, 316, and 318, are in the peak true spectrum of Unknown 3315, however, mass 176 is 

not. Therefore, it is possible that Unknown 3744 was coeluted with a different compound that 

has a molecular weight of 176 and Unknown 3315. The compound was considered a potential 

match based on visual analysis of the mass spectra. Next the RRT were verified by finding the 

percent change of the RRT from the base compound. For unknown 3315, the PRRT had -0.083% 

change while the SRRT had -1.22%. The RRT were within range. Next a library search of the 

compound’s structure was performed. The compound was determined to have a chemical 

structure of an o-p’-DDE instead of a p-p’-DDE. The difference is the location of a chlorine 

atom as shown in para position in Figure 5-6 and ortho position in Figure 5-8.  

 

Figure 5-8 The structure of an o-p’-DDE [15] 

Both structures have the same molecular weight. Typically, the retention time of the o-p’-

DDE occurs after the p-p’-DDE. The results of the percent change correspond with this common 
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occurrence.  To verify that Unknown 3315 is a match, a compound standard would need to be 

obtained and processed through the GCxGC-ToF-MS instrument.  

 The other six compounds identified were not considered a match. Two compounds, 

Unknown 2584 and Unknown 4095, visually were similar as there was likely a slight residual 

match with an interference. This residual amount does not confirm coelution, however presence 

is notable for further investigation by the lead chemist in consultation. 

 

Figure 5-9 The mass spectrum of Unknown 2584 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Peaks from the 

fingerprint of Unknown 3744 include 246, 248, and 316.  

 

Figure 5-10 The mass spectrum of Unknown 4095 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Masses that are 

in the fingerprint of Unknown 3744 include 246 and 176. 

The remaining four compounds were not determined to be a match by the FDA chemist. They 

are Unknowns 2725, 2606, 3560, and 3681. Each of the signals contained mass 246, however 

other fingerprint masses were not included and therefore compounds were determined to not be a 

match. 

 

Figure 5-11 The mass spectrum of Unknown 2725 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Masses from 

the fingerprint of Unknown 3744 are 246, 316, and 176. 
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Figure 5-12 The mass spectrum of Unknown 2606 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Compared to 

the fingerprint of Unknown 3744, only mass 246 is in the peak true.  

  

Figure 5-13 The mass spectrum of Unknown 3560 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Compared to 

the fingerprint of Unknown 3744, mass 246, 248, 316, and 318 are included. 

  

Figure 5-14 The mass spectrum of Unknown 3681 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Compared to 

the fingerprint of Unknown 3744, mass 246 and 318 appear in the peak true signal. 

Overall, the base coelution results were not conclusive to finding coelutions. A coelution 

is when two or more compounds have the same retention time or co-elute from the analytical 

column at the same time. Two compounds had slight residuals in the mass spectrum. Unknown 

3315 was similar enough to be considered a match, though it did not have the correct structure. 

Out of the 104 compounds identified in comparison to Unknown 3744, only 7.7% were labeled 

as base coelution. The low amount of base coelution results is to be expected as the base 

compound was known to be DDE. There is little to no interference of the base compound mass 

spectrum signal. The algorithm was successful in targeting mass spectra that have similar 

retention times that also have some, but not all the masses in the fingerprint. The algorithm 

performed as intended, however further investigation is necessary to verify coeluting 

compounds. 
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5.1.2. Analytes that Returned Coelution from the Mass Spectra Comparison Algorithm for 

Unknown 3744 

Like base coelutions, coelutions are labeled when V1to2 returns a real value and V2to1 

returns -1. The algorithm found nineteen coeluted compounds in window 5. After consultation 

with the FDA, only one was identified to be a match. Unknown 3456 came from the SPIKE file 

that is used for quality control purposes in the analyses of milk samples. The SPIKE refers to the 

blank matrix where the targeted analytes were added. This is used for quality control purposes to 

verify extraction efficiency in the target analysis. 

 

Figure 5-15 The mass spectrum of Unknown 3456 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Compared to 

the fingerprint of Unknown 3744, mass 246, 248, 176, 318 and 316 are found. Other masses that 

are not in Unknown 3744 include masses 212 and 165 so coelution was notated for this 

compound by the algorithm. 

 The peak true of Unknown 3456 shows each mass in the fingerprint for Unknown 3744. 

Examples of masses included in the fingerprint for Unknown 3744 that also appear in Unknown 

3456 include 165 and 212. Through consultation with the FDA, it was concluded that Unknown 

3744 was present at a residual amount. Next, the RRT percent change was investigated. The 

percent change for the PRRT was 0.194% and the SRRT was -1.46%. However, the library 

search indicated the o-p’-DDE structure. Recall that further investigation is necessary to 

determine differences between the o-p’-DDE structure and p-p’-DDE structure. 

 The remaining nineteen were concluded to not be a match. There were eleven that had no 

additional comments by the experienced analyst; Unknown 3381, Unknown 2723, Unknown 

2741, Unknown 2760, Unknown 3855, Unknown 3456, Unknown 3476, Unknown 2466, 
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Unknown 3914, Unknown 3102, Unknown 3199, and a twelfth Unknown 3115. The mass 

spectrum of 3115 was not accessible due to reprocessing of the GCxGC data. The remaining 

mass spectra can be found in Appendix A. 

From the remaining seven compounds identified as coeluting, Unknown 3181 and 3270 

seemed to have a slight residual of Unknown 3744 with an interference of another compound. 

They were not confirmed as the same compound manually. The compounds have some masses 

from the fingerprint in Unknown 3744, however, there are clearly more masses in the mass 

spectra of Unknown 3181 and Unknown 3270  

  

Figure 5-16 The mass spectrum of Unknown 3181 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Visually there 

seems to have a slight residual amount of Unknown 3744 as all the peaks within the fingerprint 

are accounted for. 

  

Figure 5-17 The mass Spectrum of Unknown 3270 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. Visually there 

seems to have a slight residual amount of Unknown 3744 as all the peaks within the fingerprint 

are accounted for. 

The remaining five compounds were identified to have mass spectra matches with 

exceptionally low intensity. The PRRTs percent change was near the 5% threshold, being at least 

4% or more. A match from the same sample was also identified by the algorithm. The mass 

spectra of Unknown 2632, Unknown 1427, Unknown 3500, Unknown 3526, and Unknown 3620 

are shown below.  
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Figure 5-18 The mass spectrum of Unknown 2632 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually represents a match to Unknown 3744 as each mass in the fingerprint is found and 

have proper ratios. However, the intensity of the peak true signal is low. 

 

Figure 5-19 The mass spectrum of Unknown 1427 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually represents a match to Unknown 3744 as each mass in the fingerprint is found and 

have proper ratios. However, the intensity of the peak true signal is low. 

 

Figure 5-20 The mass spectrum of Unknown 3500 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually represents a match to Unknown 3744 as each mass in the fingerprint is found and 

have proper ratios. However, the intensity of the peak true signal is low 

 

Figure 5-21 The mass spectrum of Unknown 3576 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually represents a match to Unknown 3744 as each mass in the fingerprint is found and 

have proper ratios. However, the intensity of the peak true signal is low 

 

Figure 5-22 The mass spectrum of Unknown 3620 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually represents a match to Unknown 3744 as each mass in the fingerprint is found and 

have proper ratios. However, the intensity of the peak true signal is low 
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Overall, the coelutions were successful in targeting compounds that contained the 

fingerprint of Unknown 3744 in their mass spectra. The fingerprint of coeluted compounds had 

more masses than Unknown 3744. At least one of the masses was not found in the fingerprint of 

Unknown 3744. Further verification needs to be performed to verify if coelution occurred. The 

last five compounds each came from a sample that already had a match confirmed by the 

algorithm. The residue in the mass spectra had a low intensity. Discussion of the identified 

matches will be presented in the next section. 

5.1.3. Analytes that Returned a Match from the Mass Spectra Comparison Algorithm for 

Unknown 3744 

There were seventy-seven matches identified by the algorithm. Recall that Unknown 

2632, Unknown 1427, Unknown 3500, Unknown 3526, and Unknown 3620 were indicated to be 

coeluting compounds by the algorithm. Each unknown had a match previously identified in the 

same sample. They are Unknown 2421, Unknown 1357, Unknown 3219, Unknown 3296, and 

Unknown 3324. There were multiple iterations of the dataset. The mass spectrum of Unknown 

3296 was lost as the data was reprocessed and therefore is not represented below, however, the 

remaining four mass spectra are shown below. 

 

Figure 5-23 The mass spectrum of Unknown 2421 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal is verified to be a match with a high intensity to Unknown 3744. 
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Figure 5-24 The mass spectrum of Unknown 1357 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal is verified to be a match with a high intensity to Unknown 3744. 

 

Figure 5-25 The mass spectrum of Unknown 3219 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal is verified to be a match with a high intensity to Unknown 3744. 

Figure 5-26 The mass spectrum of Unknown 3324 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal is verified to be a match with a high intensity to Unknown 3744. 

Each of the mass spectra are clearly the same compound through visual analysis. The 

fingerprints of the spectra above each contain peaks at 246, 248, 176, 318, and 316. The ratio 

between the peak areas are also similar to Unknown 3744. Besides the extra masses in the 

coeluted unknowns, a factor that should be considered is the percent change in the PRRT. In 

Table 5-1, Unknown 2632, Unknown 1427, Unknown 3500, Unknown 3526, and Unknown 

3620 are compared with the matching compound from the same sample. Unknown 2421, 

Unknown 1357, Unknown 3219, Unknown 3296, and Unknown 3324 are the matching 

compounds respectively from the same sample. The matching unknowns each had a percent 

change in the PRRT less than 1% and in the SRRT less than 1.5%. The PRRT percent change in 

each of the coeluting compounds were all greater than 4%. As a result, the percent change 

parameter for the PRRT can be reduced. 
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Table 5-1 The RRTs percent change is compared between the identified coeluted (potentially) 

compounds and matching compounds from the same sample based on the results of the 

comparison algorithm. Unknown 3744 where the Unknown 2632, Unknown 1427, Unknown 

3500, Unknown 3526, and Unknown 3620 correspond to the coeluting compounds as Unknown 

2421, Unknown 1357, Unknown 3219, Unknown 3296, and Unknown 3324 correspond to the 

matching compounds. Each row includes unknowns that belong to the same file 

Coeluting 

Unknowns 

PRRT % 

Change 

SRRT % 

Change 

Matching 

Unknowns 

PRRT % 

Change 

SRRT % 

Change 

% 

Certainty 

2632 4.263% 1.19% 2421 0.679% 1.19% 95.9% 

1427 4.263% 0.00% 1357 0.679% 1.19% 97.8% 

3500 4.467% 1.22% 3219 0.267% 0.00% 88.4% 

3576 4.300% 0.00% 3296 0.253% 0.00% 56.6% 

3620 4.474% 0.00% 3324 0.253% 1.23% 50.1% 

  

Out of the remaining seventy-two matches, there were five compounds that were 

algorithmically identified as a match, but after consultation with the FDA, were not verified as 

such. Unknown 2911 and Unknown 3495 both had mass spectra matches at low intensities. 

Notably, the PRRT of each was greater than 4% and another match was found previously in the 

same sample. Unknown 2698 and Unknown 3230 are the better matching compounds from the 

same sample respectively. The values of the percent change of the PRRT, SRRT and the 

certainty measurement are compared in Table 5-2. 

  

Figure 5-27 The mass spectrum of Unknown 2911 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually looks similar to Unknown 3744 at low intensities. The primary relative retention 

time of the compound is greater than 4% and determined not to be a match. 
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Figure 5-28 The mass spectrum of Unknown 3495 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The peak true 

signal visually looks similar to Unknown 3744 at low intensities. The primary relative retention 

time of the compound is greater than 4% and determined not to be a match. 

Table 5-2 The percent change of the PRRT and SRRT from the Unknown 3744 are compared 

between Unknown 2911, Unknown 3495, Unknown 2698, and Unknown 3230 as well as the 

certainty measurement. Unknown 2911 and Unknown 3495 both had a mass spectra mass of low 

intensity. Unknown 2698 and Unknown 3230 are from the same samples as the other unknowns 

respectively. The values that have low percent change in RRT. Another indicator is that the 

PRRT should be at least less than 4%. 

Low 

Intensity 

Unknown 

PRRT % 

Change 

SRRT % 

Change 

% 

Certainty 

High 

Intensity 

Unknown 

PRRT % 

Change 

SRRT % 

Change 

% 

Certainty 

2911 4.676% 0.00% 72.7% 2698 0.167% 1.39% 98.7% 

3495 4.255% 1.19% 44.2% 3230 0.518% 1.19% 96.2% 

 

From Table 5-2, the certainty percentage calculated by Equation 4-13 are greater than 

95% for Unknown 2698 and Unknown 3230. Unknown 2911 and Unknown 3495 both had 

percentages less than 75% certainty. Notice that the PRRT of Unknown 2911 and 3459 are again 

greater than 4%. This is another indicator that the PRRT percent change can be reduced from 

5%. The SRRT percent change was the same in Unknown 3495 and Unknown 3230. It is 

possible that the percentage threshold can also be reduced but should at least be 3.5%.  

 

Figure 5-29 The mass spectrum of Unknown 2698 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The compound 

was confirmed to be a match with a certainty of 98.7%. 
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Figure 5-30 The mass spectrum of Unknown 3230 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The compound 

was confirmed to be a match with a certainty of 96.2% 

 The remaining three compounds that were algorithmically identified as a match, but after 

consultation with the FDA, were not verified as such include Unknown 3902, Unknown 3112, 

and Unknown 3588. Unknown 3902 does not visually have the same ratio of mass 176 as 

Unknown 3744. Unknown 3902 also had a PRRT and SRRT percent change of 4.446% and 

1.20% and was verified not to be a match. Unknown 3112 also was not visually a match in the 

peak true signal. Though all of the masses in the fingerprint of Unknown 3744 were found, the 

ratios between each mass was not consistent with Unknown 3744. The PRRT and SRRT percent 

change of Unknown 3112 was 3.774% and 3.74% respectively. Similarly, Unknown 3588 was 

not visually equated to be a match because of the ratios in the mass spectrum. The PRRT and 

SRRT percent change of Unknown 3588 are 4.467% and 0.00%. Unknown 3588 and Unknown 

3112 both came from the same sample. In fact, four other compounds were also identified by the 

algorithm also belonged to the same sample. Analysis of Unknown 3102 (from 5.1.2), Unknown 

3112, Unknown 3297, Unknown 3315 (from 5.1.1), Unknown 3330, and Unknown 3588 was 

completed and summarized in Table 5-3 

 

Figure 5-31 The mass spectrum of Unknown 3902 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The compound 

was not determined to be a match due to the relative retention times. 
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Figure 5-32 The mass spectrum of Unknown 3112 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The compound 

was not determined to be a match due to the relative retention times. 

 

Figure 5-33 The mass spectrum of Unknown 3588 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The compound 

was not determined to be a match due to the relative retention times. 

Unknown 3588 was remarkably similar to the peak true signal of Unknown 3744. Out of 

the six compounds that were from the same sample, three were identified to have a mass 

spectrum match visually through consultation with the FDA. This includes Unknown 3297, 

Unknown 3315, and Unknown 3330. Unknown 3297 sample was determined to be the correct 

match for the sample as it has the smallest percent change in the PRRT and the highest certainty 

measurement. The structure of Unknown 3297 was identified to be p-p’-DDE, like Unknown 

3744. Unknown 3330 was identified to have an o-p’-DDE structure. As discussed earlier, the p-

p’-DDE typically occurs before the o-p’-DDE structure and is illustrated with this example. 

 

Figure 5-34 The mass spectrum of Unknown 3297 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The compound 

was the best match in the sample and has the p-p’-DDE structure. 
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Figure 5-35 The mass spectrum of Unknown 3330 where the x-axis represents the mass of each 

ion and the y-axis represents the abundance of the mass based on their peak area. The structure 

of the compound was o-p’-DDE and not verified to be a match for the sample. 

The others that were not visually a match were Unknown 3102, Unknown 3112, and 

Unknown 3588. The percent change of the PRRT ranged from 3.74%-4.467%. More evidence 

that the percent change values of at least the PRRT should be reduced to 3.5% to limit compound 

comparisons. The SRRT can also be reduced as there were no compounds identified that had a 

SRRT percent change greater than 2% for all verified matches. Another change to consider 

algorithmically is to return the best match per sample. Each sample should only have one match. 

The best match would be selected based on the certainty measurements and the percent change 

of the RRT values.  
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Table 5-3 Unknown compounds from the same sample that were identified as either a coelution, 

match, or base coelution. The PRRT and SRRT percent change are both labeled with their 

matches that indicate the percent certainty. Those highlighted in green were labeled as a match 

visually by the chemist expert. 

Unknown  Outcome  PRRT % Change SRRT % Change % Certainty 

3102 Coelution 3.950% 3.74% - 

3112 Match 3.774% 3.74% 48.7% 

3297 Match 0.267% 0.00% 98.1% 

3315 Base Coelution 0.083% 1.22% - 

3330 Match 0.434% 0.00% 79.2% 

3588 Match 4.467% 0.00% 34.9% 

 

The remaining sixty-seven matches were all confirmed visually as a match. Each had a 

PRRT percent change of less than 1%. The structure of the unknown compounds were identified 

to be p-p’-DDE like Unknown 3744. Table 5-4 presents the minimum, maximum, and average 

statistics of the PRRT percent change, SRRT percent change, and the certainty percentage. The 

average PRRT and SRRT percent change was within 1% of Unknown 3744. Next, the certainty 

measurements were evaluated. The lowest percent certainty came from Unknown 2819. Recall 

that the certainty measurement is dependent on the fingerprints’ quantification of the mass 

spectra and the difference in peak areas (Equation 4-13). For Unknown 2819, the fingerprint 

includes masses 246, 248, and 176. Masses 318 and 316 are not included in the fingerprint of 

Unknown 2819 as they are outside of the normalized threshold 0.3000. Because of this 

discrepancy, each of the masses are in both spectra however the value for E (Equation 4-10) will 

differ between V1to2 and V2to1.  
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Table 5-4 The statistical measurements of the primary relative retention time percent change, 

secondary relative retention time percent change, and the certainty measurement are listed. The 

average percent change was less than 1% in the relative retention times and the average certainty 

was greater than 90%. 

 Min Max Average 

PRRT % 0.00% 0.80% 0.33% 

SRRT % 0.00% 3.18% 0.83% 

Certainty 19.1% 99.9877% 92.80% 

  

Figure 5-36 The mass spectra of Unknown 2819 where the x-axis represents the mass of each ion 

and the y-axis represents the abundance of the mass based on their peak area. The certainty 

measurement was 19.1% because mass 316 and 318 were not quantified in the fingerprint. 

All in all, the algorithm was successful in finding matches throughout a data set. Also 

compounds that have potential to be coeluting were also identified. Further analysis to confirm 

coelution would include purchasing a standard from the manufacturer and running the standard 

in the GCxGC-ToF-MS analyses. Most of the coelutions, base or otherwise, had a different 

chemical structure and were outside of the PRRT percent change windows. It was concluded that 

the matching algorithm performed as intended and better performance would occur if the percent 

change of the PRRT and SRRT are reduced. If the percent change of the PRRT was reduced in 

the PRRT to 3.5%, then a better performance would occur. Also, if multiple compounds are 

compared from the same sample and have a result, the algorithm can be modified to return the 

best match. Now that the algorithm is successful, patterns of the GCxGC image are explored in 

the next section.  
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5.2. Exploring GCxGC Images to Recognize Patterns Throughout the Samples 

A comprehensive two-dimensional gas chromatography image is generated when each 

sample was processed in the GCxGC-ToF-MS instrument. In each image, there is a 

corresponding color that indicates the total abundance at the retention time pair.. The abundance 

is equivalent to the summation of the peak areas in corresponding mass spectrum. The GCxGC 

image has two axes, the primary retention time (PRT) and the secondary retention time (SRT). 

The PRT ranges between 450 to 2300 seconds. The SRT ranges from 0 to 3 seconds. The 

purpose of this section is to explore patterns that (potentially) emerge in the GCxGC image. 

Instead of investigating the entirety of the image, each image is separated into windows, based on 

the target POPs. Similar to section 5.1, a case study for window five was investigated.  

Window five is defined by the target compounds PCB-101 and PCB-123. The location of 

the target compounds has previously been identified during the target analysis of each sample. 

The location of PCB-123 was used to calculate the relative retention times (RRT), as expressed 

in 4.1.1, of each of the 63,501 analytes in the GCxGC image. Each RRT pairs were used to 

analyze the GCxGC image of window five. A data matrix was created for each unique RRT pair. 

If a sample has an area associated in the GCxGC image at the RRT location, the area was 

recorded. Otherwise, zero is stored in the data matrix. Afterwards, each of the areas were 

normalized based on the abundance of PCB-123 as discussed in section 4.2. The location of each 

RRT pair over the seventy-two samples is illustrated in Figure 5-37 in the discrete GCxGC 

image. 

There are 51,143 unique RRT pair locations found in all seventy-two samples. The PCA was 

performed on the 72 by 51,143 data matrix and resulted in a 72 by 71 data matrix. The p 

variables of 51,143 was reduces the m variables of 71. Each of the m variables correlated to the 

principal components (PCs). The scree plot describes how the seventy-one PCs describe the 
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variance in Figure 5-87. The scree plot has an inflection point at PC 7. The PC 1-7 describe 

55.4936% of the variance in the data set as PC 8-71 describes 44.4064%.  

 

 

Figure 5-37 The Discrete GCxGC image of every unique relative retention time location (PRRT, 

SRRT) described over all the samples. There seem to be overlapping points that can be identified 

in the principal component analysis. Recall that there are 63,501 analytes stored identified in the 

GCxGC image of window five. There are 51,143 unique RRT locations found in all 72 samples. 

The PCA was performed on the 72 by 51,143 data matrix and resulted in a seventy-two by 

seventy-one data matrix. A combination of the 51,143 locations was reduced to seventy-one 

different PCs. The scree plot describes how the seventy-one PCs describe the variance in Figure 

5-37. The scree plot has an inflection point at PC 7. The PC 1-7 describe 55.4936% of the 

variance in the data set as PC 8-71 describes 44.4064%.  
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Figure 5-38 Scree Plot of PCA performed over all GCxGC relative locations. Each component 

explains a percentage of the total variance within the original data matrix. The data matrix stored 

the normalized areas, based on PCB-123, at each RRT in Figure 5-37 

Based on the shape of the scree plot, the first seven components identify files that have 

large abundances of a compound that are not found in the other samples. The other components 

do not have a significant amount of weight as they account for 2.5% or less of the total variance 

of the data matrix. A reason that this may have occurred is that if a file does not have an area at a 

certain RRT location, a zero was inserted into the data matrix. More samples would be similar if 

they did not have a significant amount of analytes. In the future, it would be worth investigating 

the average area of a section of the GCxGC image. Recall that for the mass spectra, similarities 

were found typically within 1% of the PRRT and SRRT. Taking this into account, instead of 

using distinct unique locations the analysis could be performed over areas that are within a 

percent change of the unique RRT pairs. 
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Figure 5-39 The scree plot is zoomed in on principal components 8-71. Components 8-28 

represent at least 1% of the total variance in the data matrix. Components 29-38 explain 0.5% to 

1% of the total variance. The remaining compounds 39 to 71 account for less than 0.5%, with 

principal components 50 to 71 accounting for barely a percentage. When components explain a 

low percentage of the total data matrix, a near linear relationship is described based on the 

components. 

5.2.1. Performing the Clustering of the Scores from the Principal Component Analysis 

The total sum of the L2 normalization of all seventy-one components is graphed in Figure 

5-41. The samples that have the largest scores, from highest to lowest, are 49, 48, 30, 28, 47, 59 

and 31. PCs 1 to 7 are the most significant in defining the L2 normalization score for these 

samples. There are a handful of samples that have anL2 normalization score that is less than one 

sixth of sample 49. The contribution of PCs 8 to 71 of the L2 normalization score is graphed in 

Figure 5-42. The lowest scores in the figure are the same files indicated earlier; sample 28, 30, 

31, 47, 48, 49, and 59. This illustrates that the components 8 to 71 have low effects on those 

samples. 
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Figure 5-40 The L2 normalization scores of all 72 samples based on all seventy-one principal 

components. The blue line indicates the seven samples that have high correlation to the first 

seven components. 

 

 

Figure 5-41 The L2 normalization scores for the 72 samples of principal components 8-71. The 

red box indicates files 28, 30, 31, 47, 48, 49, and 59 that have low associations to principal 

components 8 to 71. 
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 The scores that have similar magnitudes seem to have locations in the GCxGC image that 

play a role in the PC. The k-means clustering was applied to organize the samples into different 

clusters. To determine the best representation of the data, the cophenetic correlation coefficient 

was calculated through MATLAB software as described in section 4.2.2. The squared Euclidean 

distance measurement is the default for the k-means clustering algorithm. The dendrogram using 

the squared Euclidean distance is in Figure 5-42. The cophenetic correlation coefficient for the 

squared Euclidean distance was 0.7360. The dendrogram of the sum of absolute distance was 

produced in Figure 5-44. 

 

Figure 5-42 The dendrogram of the Square Euclidean Distance. The cophenetic correlation for 

the hierarchical tree is 0.7360. The square Euclidean distance therefore is not the best 

representation of the data when using k-means 

 The cophenetic correlation coefficient of the sum of absolute distance is 0.8513 Between 

figure 5-42 and 5-43, it is clear that the sum of absolute distances measurement, referred to as  

Cityblock in MATLAB, represents the data better than the squared Euclidean distance. There 
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seem to be three distinct clusters. The evaluation tool using the silhouette method confirmed this 

hypothesis and determined that the optimal number of clusters is three.  

 

Figure 5-43 The dendrogram of the sum of absolute distances referred to as Cityblock in 

MATLAB The right most tree defines the first seven samples into one cluster. The remaining 

samples seem to evenly belong to two separate clusters. The add cophenetic correlation 

coefficient is 0.8513 and is a better representation of the data. 

 The clustering was performed on the graph on Figure 5-41 where the results are 

illustrated in Figure 5-45. Based on the clusters shown in Figure 5-42 and Figure 5-43, it was 

surprising to see that samples 31 and 59 were not included in the yellow cluster, as even in the 

Cityblock dendrogram, seven samples are in the right most grouping. Regardless, the samples 

28, 30, 47, 48, and 49 are grouped into one cluster. The clustering was repeated 1,000 times 

internally to produce the best result.  

 Once the clusters were determined, the cluster with the least amount of data points was 

removed from the L2 normalization graph. Another k-means clustering was performed still 
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utilizing the sum of absolute distance measurement between data points. A summary of samples 

within respective clusters is listed below in Table 5-5. 

Table 5-5 The colors of each box indicated the sample numbers that are within the same color 

cluster of Figure 5-45. Samples 31 and 59 were expected to be the outliers of the L2 

normalization score.  

2 4 5 6 7 8 10 11 12 13 14 16 17 18 19 20 
21 24 25 33 3436 40 41 42 

3 15 27 32 35 37 43 44 
45 56 

22 26 39 50 53 54 55 57 62    64 
65 67 72 

23 38 51 52 60 61 68 69 1 9 29 46 58 63 66 70 
71 

31 59 

 

 

 
Figure 5-44 The first clustering of all seventy-two samples based on the total L2 normalization 

score is shown. There are three clusters. The five samples in the yellow cluster identify the most 

variant samples. The blue and red clusters have samples that seem to be very close to one 

another. Clusters blue and red are re-clustered and shown in Figure 5-46. The x-axis is the 

sample numbers as the y-axis is the L2 normalization score 
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Figure 5-45 The second clustering of the L2 normalization scores not including sample 28, 30, 

47, 48, and 49. The clustering representation has a cophenetic correlation coefficient of 0.9629 

when clustering the data points above using the sum of absolute distance measurement. The x-

axis is the sample numbers as the y-axis is the L2 normalization score 

Unsurprisingly sample 31 and 59 are clustered together. These samples are outliers to the 

red and blue clusters in Figure 5-44, which is why they are isolated from the remaining data 

points. The lines indicate the centroid location of each cluster in the figures. Once the clusters 

were established, data on where the sample was taken and if the sample was organic or not was 

looked at.  

 There is no clear indication that location or whether the milk is organic is a factor in the 

clustering of the L2 normalization scores. The six samples that were organic showed up in four 

separate clusters. In terms of the geographical location that the samples were taken from, 

multiple clusters had the same states within them. There again is no clear indication that location 

played a factor in the compounds identified in each sample. It was hypothesized that the 
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geographical location could matter because there may be a greater concentration of certain POPs 

based on local dairy cow feed and fertilizer used on the farms.  

5.2.2. Investigating Scores of Principal Components and their Meaning 

Instead of looking at the total L2 normalization score, only the first seven scores of each 

sample were calculated as well as the L2 normalization score based on PC eight to seventy-one. 

A score is associated to each of the seventy-one PCs for each sample. A graph of the L2 

normalization, as described in Equation 4-17, of PC 1 to 7 vs PC 8 to 71 is shown in Figure 5-40. 

Samples 28, 30, 31, 47, 48, 49, and 59 each have a high score association with PC 1 to 7 and 

account for 55.4936% of the total variance. The other samples do not have an L2 score greater 

than 120 and are mostly described by PC 8 to 71.  

 

Figure 5-46 Scatter Plot of Files of the L2 normalization scores of PCs 1 to 7 vs PCs 8 to 71. The 

sample numbers that are shown have high associations with the 55.4936% of the total variance 

 

The intensity of the GCxGC image at a RRT location dictates the variance of the data set 

in the PCA. Discrete GCxGC images of each sample were created to illustrate each compound 

found at the RRT location and the intensity of each normalized area with respect to PCB-123. 
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The discrete GCxGC image and the actual GCxGC image of each sample are located in 

Appendix B organized by each cluster that have the highest L2 normalization scores to the lowest 

L2 normalization scores. The red data points indicate areas with high intensities, followed by the 

green which indicates PCB-123, followed by yellow that indicates intensities from 0.5 to 1 and 

finally blue which are low intensity areas in the discrete GCxGC image. 

The seven samples 28, 30, 31, 47, 48, 49, and 59 all have high intensity locations in the 

discrete GCxGC image. The PCA prioritized the high intensity locations when defining the first 

seven components. PCs eight to seventy-one indicate more of the linear relationships between 

the samples based on the low percentage associated in the scree plots. It was hypothesized that 

each cluster would have GCxGC images that look similar, however that wasn’t necessarily the 

case. Since the L2 normalization combines the scores of multiple components, samples could 

have similar values based on separate PCs.  

To investigate the scores further, the L2 normalization score of each PC is graphed and 

located in Appendix C. For example, the L2 normalization score of PC one is graphed in Figure 

5-46. By observation, the PC 1 identifies sample 49 as an outlier as PC one correlates to 16% of 

the total variance between each sample. Samples 28, 30, 47, and 48  have at least one location in 

common with sample 49 as they have a very small L2 normalization score. Conclusions of which 

samples have a commonality can be assessed based on the score graphs.    
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Figure 5-47 The L2 normalization score of principal component 1 where sample 49 is highly 

correlated with. Sample 28, 30, 47, and 48 each have at least one location that is in common with 

sample 49 since their value is not zero 

 The individual scores of the rest of the components are in Appendix C. Each illustrate 

which samples have similarities based on location of the GCxGC image. Similarities between 

samples can then be evaluated where other factors, such as whether the sample is organic or the 

location where the sample was acquired, can also be considered.  

 In conclusion, the scores of individual principal components relate samples to one 

another. Samples that have the areas in the same relative retention time location of the discrete 

GCxGC image will both have a value greater than zero in the principal component score graphs. 

To identify the locations in the GCxGC image, the coefficients of each principal component need 

to be investigated. 
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5.2.3. Investigating Coefficients of Principal Components and their Meaning 

Each PC is a weighted linear combination of every 51,143 relative retention time 

locations in the discrete GCxGC image as seen in Figure 5-37. The weights indicate the 

importance of each location in the discrete GCxGC image. Locations with zero weight do not 

contribute to the PC. Location with low weights describe locations that have an area that are not 

distinctive between samples. Finally, locations with high weights indicate there are compounds 

that have high intensities that separate samples from one another. To understand the weights of 

each location, the coefficients of a PC were normalized with respect to the maximum weight 

within the same PC.  

Insight of each PC can be made by observing the normalized weights of the coefficients. 

The graphs for PC 2 to 71 are located in Appendix D. The magnitude of the weights indicate 

how much the area at the unique RRT location correlates with the total variance of the data set. 

A positive weight of the coefficient indicates that an increase in the normalized area would also 

increase the variance of the principal component, as the score for a sample will increase. 

Similarly, a negative weight demonstrates that a decrease in the normalized area would increase 

the variance of the principal component, as the score for a sample will again increase.  
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Figure 5-48 The normalized coefficients of principal component 1 indicates how relevant the 

locations of the discrete GCxGC image are for the principal component score.  

Insight of the first PC can be gathered by observing Figure 5-48, which illustrates the 

normalized weights. There seems to be one clear location that dominates PC 1. A MATLAB 

function was developed where the RRT locations that are greater than or less than a certain 

threshold of the normalized weights can be identified. The function was used to pinpoint the 

location with the most importance i.e., has a value of one. The most dominant location 

corresponds to an area collected in sample 49. The RRT location of (0.9188, 1) has a total 

abundance of 159,242,849 and is the largest area concentration out of all seventy-two samples. 

The absolute retention time location is (1102.08, 1.459). The location shows a very high intensity 

in the GCxGC image found in Appendix B. 

Overall, the coefficients of the principal components specify how each location in the 

discrete GCxGC image contribute to the individual score of the component. When observations 

of the scores and coefficients are combined, locations that are shared between multiple samples 
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can be identified. The compounds designated can then be used in the mass spectra algorithm to 

determine if the compounds are matches or (potential) coelutions. Recall that PCs with a low 

percentage in the scree plot tend to show more of a linear or near-constant relationship while 

higher percentages identify locations that are unique to samples.  

5.3. Further Discussion of the Principal Component Analysis and its Limitations 

The coefficients and individual scores generated from the PCA can identify similarities 

between samples. Samples that have similar scores in an individual PC indicate that there are 

locations, based on the coefficients that generate the score, which are within both samples. 

Comparisons between mass spectra can be done based on the coefficient locations that are 

greater than or less than a threshold of the normalized masses.  

Recall that the mass spectra algorithm considers compounds currently that are less than 5% 

change in the PRRT and SRRT. The threshold value can be reduced to 3.5%. The PCA 

associates the variance to distinct RRT pairs, not RRTs within a certain percent change of one 

another. The average matching compounds found were within 1% change in the PRRT and 

SRRT. Instead of having 51,143 unique locations, combining areas that are within 1% change of 

one another may be a better representation of the data. It was rare to see compounds that were 

matches with 0.00% change in the PRRT and SRRT. If the PCA was performed with the 

variables representing each unique area that are within 1% change of one another, a better 

variance between each area can be completed.  

Another limitation in the PCA is that the L2 normalization scores remove the sign of the 

individual principal component scores. Though the graphs indicate the relevance of the samples, 

information is lost when only the magnitudes are considered. There may be files that have a large 

negative score for a PC. If that’s the case, then the negative coefficients are of more interest to 
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the sample. Also, samples that differ in sign allude to the fact that the samples do not correlate 

with one another. Including the sign could indicate files that are vastly different.  

The PCA is still significant in identifying locations of interest. Though the PCA does not 

take into consideration the percent change in the RRT pair locations, the mass spectra algorithm 

will compare all the compounds that are within that percent change. All in all, the mass spectra 

algorithm performed exceptionally well and the PCA was able to identify compounds for further 

investigation and which samples have similar areas based on the individual scores. 
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CHAPTER 6: CONCLUDING REMARKS 

The goal of this research was to create an algorithm that can identify matches and (potential) 

coelutions across all samples, identify compounds that are unique to a sample or within multiple 

samples, and find patterns in the overall data matrix. 

 The data was collected from a GCxGC-ToF-MS instrument. The mass spectrometry of 

each sample was evaluated with each other to determine if there were any matching compounds 

or coelutions that occurred. Overall, the algorithm designed worked well in identifying matching 

compounds. Each sample had a match of the DDE identified, as 77 matches were returned when 

analyzing Unknown 3744. There were five samples that returned multiple matches which is not 

possible. Only the best match should be returned by the algorithm if multiple matches were 

found in a sample. Another fix would be to reduce the percent change threshold of the PRRT to 

3.5-4%. The coelutions could not be confirmed as a manufactured standard of the compound 

would have to be processed on the instrument to determine the presence of the compound. The 

algorithm for ‘base coelution’ or ‘coeultion’ did perform as expected and identified compound 

that can be further investigated. All in all, the mass spectra comparisons performed exceptionally 

well when identifying compounds that are matches.  

The data from the GCxGC image was also explored. PCA was performed over all the 

areas at a RRT location, normalized with respect to PCB-123 for window 5. Each PC affects the 

score of the samples where the coefficients of the PC identifies locations that impact the variance 

of the original dataset. No distinct pattern was found within the samples, however, insight to 

locations and which samples are similar to each other can be gather based on the observation of 

the individual score graphs.  
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There are numerous ideas that can be applied in future work to identify patterns across 

samples. First, analysis can be done using the scores of the individual components. This would 

be done by identifying the samples that have a value greater than zero in the individual score 

graphs. A node graph could be created where the weight between samples is increased if a 

principal component’s individual score correlates with both samples. The graph will indicate 

how many samples are corresponded together, and after quantification, clustering can be done 

for similar files. 

Using the node graph, multiple windows should be evaluated. Each window can have a 

representative graph that can be expanded to include the information for all the windows. Insight 

on how windows are similar or different may drive more research. 

A node graph could also be used to relate the amount of compound matches from the 

mass spectra algorithm there are between samples. Large amounts of matches between samples 

can address the importance of the geographical location. It can also indicate if organic samples 

are more similar. 

Another aspect to consider is to identify compounds that are within all samples by 

counting the number of matches. If there are compounds that only appear in a handful of 

samples, then further investigation if other unique compounds also belong to the same subsection 

occur throughout multiple windows.  

Building off section 5.3, the information collected from the PCA can identify abundant 

compounds. It would be of interest to analyze matches throughout the entire sample set to see if 

the abundant compound appears in other samples, even at low intensities.  

Also, again continuing the discussion from 5.3, it would be relevant to try to use the PCA 

over a data matrix that focuses on areas that are within a 1% change of the distinct retention 
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time. The areas should still be normalized as the PCA is dependent on the magnitudes of the 

variables. Identifying areas that are within a small region of the GCxGC image identifies 

locations in the GCxGC image that are most likely to be a match. Investigating based on the 

distinct relative retention time pair means that if there was an area that differed by 0.03% in the 

primary relative retention time, they were viewed to be similar. Based on the mass spectra 

comparisons, the low percent change has a likelihood of producing a match and should be further 

researched. 

Finally, another approach for future work would be to identify the locations of 

significance in each of the principal components. Distinguish which relative locations were used 

throughout each component to classify each locations importance.  

Overall, the framework of interpretation of the principal component analysis is given. 

There are multiple routes that the future work can take utilizing this information. The key factors 

from the research were how target compounds can identify non-target compounds using relative 

retention times as well as how to classify non-target compounds within the data matrix. 

6.1.  Key Contributions 

The most valuable information attained from the presented research is that relative 

retention times based on the target compounds can account for the drifts in the absolute retention 

time. Since each sample has the same target compounds, where each have all been previously 

identified over the past decade, the relative retention time measurements can be applied to every 

sample. On average, matching analytes across samples are typically within 1% of another 

analyte’s primary relative retention.  
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Discussion of how to interpret the principal component analysis was also provided. 

Locations of interest based on the relative retention times were indicated from the scores and 

coefficients of each principal component.  

As a result of this research, a MATLAB resource was produced. Chemists can then do their 

own analysis and further investigate other windows or refine results in window 5. The algorithms 

and methodologies discussed can be applied over any large data repository of chemometric 

measurements. Other lipophilic samples, such as eggs and fish, could also undergo the same 

analysis.      
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APPENDIX A: MASS SPECTRA 

Figure A-1 The mass spectrum of Unknown 3381 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All masses that are within the fingerprint of Unknown 3744 are present 

however there are other masses that are included in the fingerprint of Unknown 3381. ............. 74 

Figure A-2 The mass spectrum of Unknown 2723 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 2723. ......................................................................... 74 

Figure A-3 The mass spectrum of Unknown 2741 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 2741. ......................................................................... 74 

Figure A-4 The mass spectrum of Unknown 2760 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 2760 .......................................................................... 74 

Figure A-5 The mass spectrum of Unknown 3855 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 3855. ......................................................................... 75 

Figure A-6 The mass spectrum of Unknown 3476 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 3476. ......................................................................... 75 

Figure A-7 The mass spectrum of Unknown 2466 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 2723. ......................................................................... 75 

Figure A-8 The mass spectrum of Unknown 3914 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 2723. ......................................................................... 75 

Figure A-9 The mass spectrum of Unknown 3102 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 3102. ......................................................................... 76 
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Figure A-10 The mass spectrum of Unknown 3199 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more 

masses within the fingerprint of Unknown 3199. ......................................................................... 76 
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Figure A-1 The mass spectrum of Unknown 3381 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All masses that are within the fingerprint of Unknown 3744 are present however 

there are other masses that are included in the fingerprint of Unknown 3381. 

 

 

Figure A-2 The mass spectrum of Unknown 2723 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 2723. 

 

 

Figure A-3 The mass spectrum of Unknown 2741 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 2741. 

 

 

Figure A-4 The mass spectrum of Unknown 2760 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 2760 
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Figure A-5 The mass spectrum of Unknown 3855 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 3855. 

 

 

Figure A-6 The mass spectrum of Unknown 3476 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 3476. 

 

 
Figure A-7 The mass spectrum of Unknown 2466 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 2723. 

  

 

Figure A-8 The mass spectrum of Unknown 3914 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 2723. 
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Figure A-9 The mass spectrum of Unknown 3102 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 3102. 

 

Figure A-10 The mass spectrum of Unknown 3199 labeled as Coelution where the x-axis 

represents the mass of each ion and the y-axis represents the abundance of the mass based on 

their peak area. All the masses from Unknown 3744 are included however there are more masses 

within the fingerprint of Unknown 3199. 
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Each discrete GCxGC image of window 5 has two axes. The x-axis is the primary 

relative retention time and the y-axis is the secondary relative retention times. The red data 

points indicate normalized areas based on PCB-123 that are greater than 1, followed by the green 

which indicates the target compound PCB-123, followed by yellow that indicates the normalized 

areas in the range of 0.5 to 1 and finally blue which are low intensity areas in the discrete 

GCxGC image. 

 

Each of the real GCxGC images are between PCB-101 and PCB-123 to indicate window 

5. The absolute primary and secondary retention time represent the two axes. The color of the 

chromatogram represents the abundance of a compound at a retention time pair. A graph of the 

intensities is below the chromatogram. The primary and secondary retention times represent the 

x-axis where the y-axis is the intensity.   
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Cluster 1: Samples 28, 30, 47, 48, and 49 that have the highest L2 normalization scores. 

 

Figure B-1 The discrete GCxGC image of Sample 28 that belongs to cluster 1 

  

Figure B-2 The real GCxGC image of Sample 28 that belongs to cluster 1 
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Figure B-3 The discrete GCxGC image of sample 30 that belongs to cluster 1 

 

Figure B-4 The real GCxGC image of Sample 30 that belongs to cluster 1 
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Figure B-5 The discrete GCxGC image of Sample 47 that belongs to cluster 1 

 

Figure B-6 The real GCxGC image of Sample 47 that belongs to cluster 1 
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Figure B-7 The discrete GCxGC image of Sample 48 that belongs to cluster 1 

 

Figure B-8 The real GCxGC image of Sample 48 that belongs to cluster 1 
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Figure B-9 The discrete GCxGC image of Sample 49 that belongs to cluster 1 

 

Figure B-10 The real GCxGC image of Sample 49 that belongs to cluster 1 
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Cluster 2: Samples 31, and 59  

 

Figure B-11 The discrete GCxGC image of Sample 31 that belongs to cluster 2 

 

 

Figure B-12 The real GCxGC image of Sample 31 that belongs to cluster 2 
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Figure B-13 The discrete GCxGC image of Sample 59 that belongs to cluster 2 

 

 

Figure B-14 The real GCxGC image of Sample 59 that belongs to cluster 2 
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Cluster 3: Samples 1, 9, 29, 46, 58, 63, 66, 70, and 71 

 

Figure B-15 The discrete GCxGC image of Sample 1 that belongs to cluster 3 

 

Figure B-16 The real GCxGC image of Sample 1 that belongs to cluster 3 
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Figure B-17 The discrete GCxGC image of Sample 9 that belongs to cluster 3 

 

Figure B-18 The real GCxGC image of Sample 9 that belongs to cluster 3 
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Figure B-19 The discrete GCxGC image of Sample 29 that belongs to cluster 3 

 

Figure B-20 The real GCxGC image of Sample 29 that belongs to cluster 3 
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Figure B-21 The discrete GCxGC image of Sample 46 that belongs to cluster 3 

 

Figure B-22 The real GCxGC image of Sample 46 that belongs to cluster 3 

 



95 

 

 

Figure B-23 The discrete GCxGC image of Sample 58 that belongs to cluster 3 

 

Figure B-24 The real GCxGC image of Sample 58 that belongs to cluster 3 
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Figure B-25 The discrete GCxGC image of Sample 63 that belongs to cluster 3 

 

Figure B-26 The real GCxGC image of Sample 63 that belongs to cluster 3 
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Figure B-27 The discrete GCxGC image of Sample 66 that belongs to cluster 3 

 

Figure B-28 The real GCxGC image of Sample 66 that belongs to cluster 3 
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Figure B-29 The discrete GCxGC image of Sample 70 that belongs to cluster 3 

 

Figure B-30 The real GCxGC image of Sample 70 that belongs to cluster 3 
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Figure B-31 The discrete GCxGC image of Sample 71 that belongs to cluster 3 

 

Figure B-32 The real GCxGC image of Sample 71 that belongs to cluster 3 
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Cluster 4: Samples 23, 38, 51, 52, 60, 61, 68, and 69 

 

Figure B-33 The discrete GCxGC image of Sample 23 that belongs to cluster 4 

 

Figure B-34 The real GCxGC image of Sample 23 that belongs to cluster 4 
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Figure B-35 The discrete GCxGC image of Sample 38 that belongs to cluster 4 

 

Figure B-36 The real GCxGC image of Sample 38 that belongs to cluster 4 
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Figure B-37 The discrete GCxGC image of Sample 51 that belongs to cluster 4 

 

Figure B-38 The real GCxGC image of Sample 51 that belongs to cluster 4 
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Figure B-39 The discrete GCxGC image of Sample 52 that belongs to cluster 4 

 

Figure B-40 The real GCxGC image of Sample 52 that belongs to cluster 4 
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Figure B-41 The discrete GCxGC image of Sample 60 that belongs to cluster 4 

 

Figure B-42 The real GCxGC image of Sample 60 that belongs to cluster 4 
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Figure B-43 The discrete GCxGC image of Sample 61 that belongs to cluster 4 

 

Figure B-44 The real GCxGC image of Sample 61 that belongs to cluster 4 
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Figure B-45 The discrete GCxGC image of Sample 68 that belongs to cluster 4 

 

Figure B-46 The real GCxGC image of Sample 68 that belongs to cluster 4 
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Figure B-47 The discrete GCxGC image of Sample 69 that belongs to cluster 4 

 

Figure B-48 The real GCxGC image of Sample 69 that belongs to cluster 4 
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Cluster 5: Samples 22, 26, 39, 50, 53, 54, 55, 57, 62, 64, 65, 67, and 72 

 

Figure B-49 The discrete GCxGC image of Sample 22 that belongs to cluster 5 

 

 

Figure B-50 The real GCxGC image of Sample 22 that belongs to cluster 5 



109 

 

 

Figure B-51 The discrete GCxGC image of Sample 26 that belongs to cluster 5 

 

 

Figure B-52 The real GCxGC image of Sample 26 that belongs to cluster 5 
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Figure B-53 The discrete GCxGC image of Sample 39 that belongs to cluster 5 

 

 

Figure B-54 The real GCxGC image of Sample 39 that belongs to cluster 5 
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Figure B-55 The discrete GCxGC image of Sample 50 that belongs to cluster 5 

 

 

Figure B-56 The real GCxGC image of Sample 50 that belongs to cluster 5 
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Figure B-57 The discrete GCxGC image of Sample 53 that belongs to cluster 5 

 

 

Figure B-58 The real GCxGC image of Sample 53 that belongs to cluster 5 
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Figure B-59 The discrete GCxGC image of Sample 54 that belongs to cluster 5 

 

 

Figure B-60 The real GCxGC image of Sample 54 that belongs to cluster 5 
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Figure B-61 The discrete GCxGC image of Sample 55 that belongs to cluster 5 

 

 

Figure B-62 The real GCxGC image of Sample 55 that belongs to cluster 5 
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Figure B-63 The discrete GCxGC image of Sample 57 that belongs to cluster 5 

 

 

Figure B-64 The real GCxGC image of Sample 57 that belongs to cluster 5 
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Figure B-65 The discrete GCxGC image of Sample 62 that belongs to cluster 5 

 

 

Figure B-66 The real GCxGC image of Sample 62 that belongs to cluster 5 
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Figure B-67 The discrete GCxGC image of Sample 64 that belongs to cluster 5 

 

 

Figure B-68 The real GCxGC image of Sample 64 that belongs to cluster 5 
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Figure B-69 The discrete GCxGC image of Sample 65 that belongs to cluster 5 

 

 

Figure B-70 The real GCxGC image of Sample 65 that belongs to cluster 5 
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Figure B-71 The discrete GCxGC image of Sample 67 that belongs to cluster 5 

 

 

Figure B-72 The real GCxGC image of Sample 67 that belongs to cluster 5 
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Figure B-73 The discrete GCxGC image of Sample 72 that belongs to cluster 5 

 

 

Figure B-74 The real GCxGC image of Sample 72 that belongs to cluster 5  
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Cluster 6: Sample 3, 15, 27, 32, 37, 43, 44, 45, 46 

 

Figure B-75 The discrete GCxGC image of Sample 3 that belongs to cluster 6 

 

 

Figure B-76 The real GCxGC image of Sample 3 that belongs to cluster 6 
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Figure B-77 The discrete GCxGC image of Sample 15 that belongs to cluster 6 

 

 

Figure B-78 The real GCxGC image of Sample 15 that belongs to cluster 6 
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Figure B-79 The discrete GCxGC image of Sample 27 that belongs to cluster 6 

 

 

Figure B-80 The real GCxGC image of Sample 27 that belongs to cluster 6 
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Figure B-81 The discrete GCxGC image of Sample 32 that belongs to cluster 6 

 

 

Figure B-82 The real GCxGC image of Sample 32 that belongs to cluster 6 
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Figure B-83 The discrete GCxGC image of Sample 37 that belongs to cluster 6 

 

 

Figure B-84 The real GCxGC image of Sample 37 that belongs to cluster 6 
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Figure B-85 The discrete GCxGC image of Sample 43 that belongs to cluster 6 

 

 

Figure B-86 The real GCxGC image of Sample 43 that belongs to cluster 6 
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Figure B-87 The discrete GCxGC image of Sample 44 that belongs to cluster 6 

 

 

Figure B-88 The real GCxGC image of Sample 44 that belongs to cluster 6 
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Figure B-89 The discrete GCxGC image of Sample 45 that belongs to cluster 6 

 

 

Figure B-90 The real GCxGC image of Sample 45 that belongs to cluster 6 
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Figure B-91 The discrete GCxGC image of Sample 46 that belongs to cluster 6 

 

 

Figure B-92 The real GCxGC image of Sample 46 that belongs to cluster 6 
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Cluster 7: 2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 24, 25, 33, 34, 36, 40, 41, and 

42 

 

Figure B-93 The discrete GCxGC image of Sample 2 that belongs to cluster 7 

 

Figure B-94 The real GCxGC image of Sample 2 that belongs to cluster 7 
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Figure B-95 The discrete GCxGC image of Sample 4 that belongs to cluster 7 

 

 

 Figure B-96 The real GCxGC image of Sample 4 that belongs to cluster 7  
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Figure B-97 The discrete GCxGC image of Sample 5 that belongs to cluster 7 

 

 

Figure B-98 The real GCxGC image of Sample 5 that belongs to cluster 7 
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Figure B-99 The discrete GCxGC image of Sample 6 that belongs to cluster 7 

 

 

Figure B-100 The real GCxGC image of Sample 6 that belongs to cluster 7 
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Figure B-101 The discrete GCxGC image of Sample 7 that belongs to cluster 7 

 

 

Figure B-102 The real GCxGC image of Sample 7 that belongs to cluster 7 



135 

 

 

Figure B-103 The discrete GCxGC image of Sample 8 that belongs to cluster 7 

 

 

Figure B-104 The real GCxGC image of Sample 8 that belongs to cluster 7 
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Figure B-105 The discrete GCxGC image of Sample 10 that belongs to cluster 7 

 

 

Figure B-106 The real GCxGC image of Sample 10 that belongs to cluster 7 
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Figure B-107 The discrete GCxGC image of Sample 11 that belongs to cluster 7 

 

 

Figure B-108 The real GCxGC image of Sample 11 that belongs to cluster 7 
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Figure B-109 The discrete GCxGC image of Sample 12 that belongs to cluster 7 

 

 

Figure B-110 The real GCxGC image of Sample 12 that belongs to cluster 7 
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Figure B-111 The discrete GCxGC image of Sample 13 that belongs to cluster 7 

 

 

Figure B-112 The real GCxGC image of Sample 13 that belongs to cluster 7 
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Figure B-113 The discrete GCxGC image of Sample 14 that belongs to cluster 7 

 

 

Figure B-114 The real GCxGC image of Sample 14 that belongs to cluster 7 
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Figure B-115 The discrete GCxGC image of Sample 16 that belongs to cluster 7 

 

 

Figure B-116 The real GCxGC image of Sample 16 that belongs to cluster 7 



142 

 

 

Figure B-117 The discrete GCxGC image of Sample 17 that belongs to cluster 7 

 

 

Figure B-118 The real GCxGC image of Sample 17 that belongs to cluster 7 
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Figure B-119 The discrete GCxGC image of Sample 18 that belongs to cluster 7 

 

Figure B-120 The real GCxGC image of Sample 18 that belongs to cluster 7 
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Figure B-121 The discrete GCxGC image of Sample 19 that belongs to cluster 7 

 

 

Figure B-122 The real GCxGC image of Sample 19 that belongs to cluster 7 
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Figure B-123 The discrete GCxGC image of Sample 20 that belongs to cluster 7 

 

 

Figure B-124 The real GCxGC image of Sample 20 that belongs to cluster 7 
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Figure B-125 The discrete GCxGC image of Sample 21 that belongs to cluster 7 

 

 

Figure B-126 The real GCxGC image of Sample 21 that belongs to cluster 7 
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Figure B-127 The discrete GCxGC image of Sample 24 that belongs to cluster 7 

 

 

Figure B-128 The real GCxGC image of Sample 24 that belongs to cluster 7 
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Figure B-129 The discrete GCxGC image of Sample 25 that belongs to cluster 7 

 

 

Figure B-130 The real GCxGC image of Sample 42 that belongs to cluster 7 

 



149 

 

 

Figure B-131 The discrete GCxGC image of Sample 33 that belongs to cluster 7 

 

 

Figure B-132 The real GCxGC image of Sample 33 that belongs to cluster 7 
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Figure B-133 The discrete GCxGC image of Sample 34 that belongs to cluster 7 

 

 

Figure B-134 The real GCxGC image of Sample 34 that belongs to cluster 7 
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Figure B-135 The discrete GCxGC image of Sample 36 that belongs to cluster 7 

  

Figure B-136 The real GCxGC image of Sample 36 that belongs to cluster 7 
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Figure B-137 The discrete GCxGC image of Sample 40 that belongs to cluster 7 

 

 

Figure B-138 The real GCxGC image of Sample 40 that belongs to cluster 7 
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Figure B-139 The discrete GCxGC image of Sample 41 that belongs to cluster 7

 

Figure B-140 The real GCxGC image of Sample 41 that belongs to cluster 7 
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Figure B-141 The discrete GCxGC image of Sample 42 that belongs to cluster 7 

 

 

Figure B-142 The real GCxGC image of Sample 42 that belongs to cluster 7 

  



155 

 

APPENDIX C: SCORES OF PRINCIPAL COMPONENTS 

Figure C-1 Principal component 2 scores ................................................................................... 158 

Figure C-2 Principal component 3 scores ................................................................................... 158 

Figure C-3 Principal component 4 scores ................................................................................... 158 

Figure C-4 Principal component 5 scores ................................................................................... 158 

Figure C-5 Principal component 6 scores ................................................................................... 159 

Figure C-6 Principal component 7 scores ................................................................................... 159 

Figure C-7 Principal component 8 scores ................................................................................... 159 

Figure C-8 Principal component 9 scores ................................................................................... 159 

Figure C-9 Principal component 10 scores ................................................................................. 159 

Figure C-10 Principal component 11 scores ............................................................................... 159 

Figure C-11 Principal component 12 scores ............................................................................... 160 

Figure C-12 Principal component 13 scores ............................................................................... 160 

Figure C-13 Principal component 14 scores ............................................................................... 160 

Figure C-14 Principal component 15 scores ............................................................................... 160 

Figure C-15 Principal component 16 scores ............................................................................... 160 

Figure C-16 Principal component 17 scores ............................................................................... 160 

Figure C-17 Principal component 18 scores ............................................................................... 161 

Figure C-18 Principal component 19 scores ............................................................................... 161 

Figure C-19 Principal component 20 scores ............................................................................... 161 

Figure C-20 Principal component 21 scores ............................................................................... 161 

Figure C-21 Principal component 22 scores ............................................................................... 161 

Figure C-22 Principal component 23 scores ............................................................................... 161 

Figure C-23 Principal component 24 scores ............................................................................... 162 

Figure C-24 Principal component 25 scores ............................................................................... 162 



156 

 

Figure C-25 Principal component 26 scores ............................................................................... 162 

Figure C-26 Principal component 27 scores ............................................................................... 162 

Figure C-27 Principal component 28 scores ............................................................................... 162 

Figure C-28 Principal component 29 scores ............................................................................... 162 

Figure C-29 Principal component 30 scores ............................................................................... 163 

Figure C-30 Principal component 31 scores ............................................................................... 163 

Figure C-31 Principal component 32 scores ............................................................................... 163 

Figure C-32 Principal component 33 scores ............................................................................... 163 

Figure C-33 Principal component 34 scores ............................................................................... 163 

Figure C-34 Principal component 35 scores ............................................................................... 163 

Figure C-35 Principal component 36 scores ............................................................................... 164 

Figure C-36 Principal component 37 scores ............................................................................... 164 

Figure C-37 Principal component 38 scores ............................................................................... 164 

Figure C-38 Principal component 39 scores ............................................................................... 164 

Figure C-39 Principal component 40 scores ............................................................................... 164 

Figure C-40 Principal component 41 scores ............................................................................... 164 

Figure C-41 Principal component 42 scores ............................................................................... 165 

Figure C-42 Principal component 43 scores ............................................................................... 165 

Figure C-43 Principal component 44 scores ............................................................................... 165 

Figure C-44 Principal component 45 scores ............................................................................... 165 

Figure C-45 Principal component 46 scores ............................................................................... 165 

Figure C-46 Principal component 47 scores ............................................................................... 165 

Figure C-47 Principal component 48 scores ............................................................................... 166 

Figure C-48 Principal component 49 scores ............................................................................... 166 

Figure C-49 Principal component 50 scores ............................................................................... 166 



157 

 

Figure C-50 Principal component 51 scores ............................................................................... 166 

Figure C-51 Principal component 52 scores ............................................................................... 166 

Figure C-52 Principal component 53 scores ............................................................................... 166 

Figure C-53 Principal component 54 scores ............................................................................... 167 

Figure C-54 Principal component 55 scores ............................................................................... 167 

Figure C-55 Principal component 56 scores ............................................................................... 167 

Figure C-56 Principal component 57 scores ............................................................................... 167 

Figure C-57 Principal component 58 scores ............................................................................... 167 

Figure C-58 Principal component 59 scores ............................................................................... 167 

Figure C-59 Principal component 60 scores ............................................................................... 168 

Figure C-60 Principal component 61 scores ............................................................................... 168 

Figure C-61 Principal component 62 scores ............................................................................... 168 

Figure C-62 Principal component 63 scores ............................................................................... 168 

Figure C-63 Principal component 64 scores ............................................................................... 168 

Figure C-64 Principal component 65 scores ............................................................................... 168 

Figure C-65 Principal component 66 scores ............................................................................... 169 

Figure C-66 Principal component 67 scores ............................................................................... 169 

Figure C-67 Principal component 68 scores ............................................................................... 169 

Figure C-68 Principal component 69 scores ............................................................................... 169 

Figure C-69 Principal component 70 scores ............................................................................... 169 

Figure C-70 Principal component 71 scores ............................................................................... 169 

 

  



158 

 

Each of the principal component scores are graphed below. Each sample number has a 

score. The x-axis corresponds to the sample number and the y-axis is the L2 normalization score.  

 

 

Figure C-1 Principal component 2 scores 

 

Figure C-2 Principal component 3 scores  

 

 

Figure C-3 Principal component 4 scores 

 

Figure C-4 Principal component 5 scores 
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Figure C-5 Principal component 6 scores 

 

Figure C-6 Principal component 7 scores 

 

Figure C-7 Principal component 8 scores 

 

Figure C-8 Principal component 9 scores 

 

Figure C-9 Principal component 10 scores 

 

Figure C-10 Principal component 11 scores 
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Figure C-11 Principal component 12 scores 

 

Figure C-12 Principal component 13 scores 

 

Figure C-13 Principal component 14 scores 

 

Figure C-14 Principal component 15 scores 

 

Figure C-15 Principal component 16 scores 

 

Figure C-16 Principal component 17 scores 
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Figure C-17 Principal component 18 scores 

 

Figure C-18 Principal component 19 scores 

 

Figure C-19 Principal component 20 scores 

 

Figure C-20 Principal component 21 scores 

 

Figure C-21 Principal component 22 scores 

 

Figure C-22 Principal component 23 scores 
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Figure C-23 Principal component 24 scores 

 

Figure C-24 Principal component 25 scores 

 

Figure C-25 Principal component 26 scores 

 

Figure C-26 Principal component 27 scores 

 

Figure C-27 Principal component 28 scores 

 

Figure C-28 Principal component 29 scores 
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Figure C-29 Principal component 30 scores 

 

Figure C-30 Principal component 31 scores 

 

Figure C-31 Principal component 32 scores 

 

Figure C-32 Principal component 33 scores 

 

Figure C-33 Principal component 34 scores 

 

Figure C-34 Principal component 35 scores 
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Figure C-35 Principal component 36 scores 

 

Figure C-36 Principal component 37 scores 

 

Figure C-37 Principal component 38 scores 

 

Figure C-38 Principal component 39 scores 

 

Figure C-39 Principal component 40 scores 

 

Figure C-40 Principal component 41 scores 
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Figure C-41 Principal component 42 scores 

 

Figure C-42 Principal component 43 scores 

 

Figure C-43 Principal component 44 scores 

 

Figure C-44 Principal component 45 scores 

 

Figure C-45 Principal component 46 scores 

 

Figure C-46 Principal component 47 scores 
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Figure C-47 Principal component 48 scores 

 

Figure C-48 Principal component 49 scores 

 

Figure C-49 Principal component 50 scores 

 

Figure C-50 Principal component 51 scores 

 

Figure C-51 Principal component 52 scores 

 

Figure C-52 Principal component 53 scores 
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Figure C-53 Principal component 54 scores 

 

Figure C-54 Principal component 55 scores 

 

Figure C-55 Principal component 56 scores 

 

Figure C-56 Principal component 57 scores 

 

Figure C-57 Principal component 58 scores 

 

Figure C-58 Principal component 59 scores 
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Figure C-59 Principal component 60 scores 
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Figure C-64 Principal component 65 scores 
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Figure C-65 Principal component 66 scores 
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Each graph below represents which of the 51,143 relative retention time locations are 

most important when describing the principal components. The weight of each location is 

normalized by the maximum value as described in Equation 4-14. The y-axis represents the 

significance of each location.  
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